Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Supplementary Information for: A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii Running title: A novel D-xylose sensing and transport model Zhe Sun1, Yixiong Chen2, Chen Yang1, Sheng Yang1, Yang Gu1,4*, Weihong Jiang1,3* 1 Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China 2 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China 3 Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China 4 State Key Laboratory of Motor Vehicle Biofuel Technolog, Nanyang 473000, China To whom correspondence should be addressed to: Weihong Jiang, 300 Fenglin Road, Shanghai, China. Tel: 86-21-54924172; Fax: 86-21-54924015. E-mail: [email protected] Yang Gu, 300 Fenglin Road, Shanghai, China. Tel: 86-21-54924178; Fax: 86-21-54924015. E-mail: [email protected] 1 Fig. S1. Confirmation of the gene disruption in C. beijerinckii mutants by PCR. The lytS, yesN, xylFII, xylF, xylG and xylH genes were disrupted by inserting an intron. MK, DNA marker; WT, the genome of wild-type C. beijerinckii NCIMB 8052. 2 Fig. S2. The growth and sugar consumption of C. beijerinckii mutants with disruption in the lytS, yesN (A), xylFII, xylF, xylG and xylH (B) gene. The experiments were performed in YP2 medium using glucose as the sole carbon source. Solid lines represent residual glucose in the medium, and dashed lines represent the growth curves. The vertical bars indicate the standard deviation of the mean for three independent replicate cultures. 3 Fig. S3. Functional complementation of the xylFII (A), lytS (B), yesN (C), xylF (D) and xylG (E) mutants. The YP2 medium was used in the fermentation using D-xylose as the sole carbon source, the residual D-xylose in the medium (solid lines) and growth curves (dashed lines) were monitored. 8052pIMPI, wild-type strain harboring the plasmid pIMPI; 8052xylFII-pIMPI, xylFII-disrupted strain harboring pIMPI; 8052lytS-pIMPI, lytS-disrupted strain harboring pIMPI; 8052yesN-pIMPI, yesN-disrupted strain harboring pIMPI; 8052xylF-pIMPI, xylF-disrupted strain harboring pIMPI; 8052xylG-pIMPI, xylG-disrupted strain harboring pIMPI; 8052xylFII-ptb-xylFII, xylFII gene-complemented strain; 8052lytS-ptb-lytS, lytS gene-complemented strain; 8052yesN-ptb-yesN, yesN gene-complemented strain; 8052xylF-ptb-xylF, xylF gene-complemented strain; 8052xylG-ptb-xylG, xylG gene-complemented strain;. Vertical bars indicate the standard deviation of the mean for three independent replicate cultures. 4 Fig. S4. Domain organization of LytS and YesN. TM, transmembrane domain; HAMP, Histidine kinase, Adenylyl cyclase, Methyl-binding protein, Phosphatase domain; His_kinase, Histidine Kinase A (dimerization/phosphoacceptor) domain; HATPase_c, Histidine kinase-like ATPase. REC, HTH_AraC, helix-turn-helix DNA-binding domain. 5 signal-receiving domain; Fig. S5. EMSAs of MBP and YesN proteins binding to the xylFGH promoter region. (A) The assay was performed using the indicated amounts of purified MBP protein (nM) and Cy5 fluorescence-labeled xylFGH promoter probe (2 nM). (B) Binding of either non-phosphorylated or phosphorylated YesN to the xylFGH promoter. YesN was phosphorylated by addition of 10 mM acetyl phosphate. The bands were quantified using Quantity One software (Bio-Rad), and the percentage of migrated DNA was calculated. The dissociation constants (Kd) values were determined using the GraphPad Prism software. 6 Fig. S6. Mutational analysis of the YesN binding sites in the xylFGH promoter region. (A) The DNA sequence of wild-type and randomly mutated DNA fragments of the xylFGH promoter. M11, the 13 bp neighboring the protected region were randomly mutated as a control; M12, the 42-bp protected region was randomly mutated. (B) EMSAs of YesN protein binding to the wild-type and mutated xylFGH promoter regions. The assay was performed using the indicated amounts of purified YesN protein (nM) and Cy5 fluorescence-labeled xylFGH promoter probe (2 nM). The 16S rRNA, xylAI, and xylB promoter regions were adopted as negative controls. 7 Fig. S7. Prediction of transmembrane domains in LytS, XylFII, and XylF. The predictions were made using (http://www.cbs.dtu.dk/services/TMHMM-2.0). domain. 8 the TMHMM TMhelix, 2.0 transmembrane server helix Fig. S8. ITC studies of D-xylose binding by pLytS. The upper panel shows the calorimetric titration of the binding protein with ligand, and the lower panel displays the corresponding integrated heat, which was normalized and corrected for the heat of dilution versus the molar ratio. 9 Table S1. Firmicutes bacteria harboring the “three-component system”. Bacteria Class Order Clostridium termitidis CT1112 Clostridia Clostridiales Clostridium sp. DL-VIII Clostridia Clostridiales Sensor TCS ABC transporter CTER_0909 CTER_0910, CTER_0911 CTER_0912, CTER_0914, CTER_0915, CDLVIII_5131 CDLVIII_5130, CDLVIII_5127, CDLVIII_5126, CDLVIII_5129 CDLVIII_5125 CTER_0916 Clostridium sp. Maddingley Clostridia Clostridiales A370_02150 A370_02149, A370_02148 A370_02147, A370_02146, A370_02145 Clostridia Clostridiales Cspa_c23460 Cspa_c23470, Cspa_c23500, Cspa_c23510, Cspa_c23520 MBC34-26 Clostridium saccharoperbutylacetonicum Cspa_c23480 N1-4(HMT) Clostridium clostridioforme 90A7 Clostridia Clostridiales HMPREF1082_03227 HMPREF1082_03226, HMPREF1082_03224, HMPREF1082_03223, HMPREF1082_03225 HMPREF1082_03222, HMPREF1082_03221 Clostridium cellulovorans 743B Clostridia Clostridiales Clocel_3840 Clocel_3841, Clocel_3842 Clocel_3839, Clocel_3838, Clocel_3837 Clostridium carboxidivorans P7 Clostridia Clostridiales CcarbDRAFT_0061 CcarbDRAFT_0060, CcarbDRAFT_0058, CcarbDRAFT_0057, CcarbDRAFT_0059 CcarbDRAFT_0056 Clostridium cellulolyticum H10 Clostridia Clostridiales Ccel_1984 Ccel_1983, Ccel_1982 Ccel_1985, Ccel_1986, Ccel_1987 Clostridium phytofermentans Clostridia Clostridiales Cphy_1581 Cphy_1582, Cphy_1583 Cphy_1584, Cphy_1585, Cphy_1586, ISDg Clostridium beijerinckii NCIMB Cphy_1587 Clostridia Clostridiales Cbei_2377 Cbei_2378, Cbei_2379 Cbei_2380, Cbei_2381, Cbei_2382 Clostridia Clostridiales HMPREF1085_02978 HMPREF1085_02977, HMPREF1085_02975, HMPREF1085_02974, HMPREF1085_02976 HMPREF1085_02973, HMPREF1085_02972 CAAU_0343, CAAU_0341, CAAU_0340, CAAU_0339, CAAU_0342 CAAU_0338 8052 Clostridium bolteae 90A9 Caloramator australicus RC3 Clostridia Clostridiales CAAU_0344 10 Bacteria Class Alkaliphilus metalliredigens Clostridia Order Clostridiales Sensor Amet_2818 TCS ABC transporter Amet_2817, Amet_2816 Amet_2815, Amet_2814, Amet_2813, QYMF Amet_2812 Butyrivibrio proteoclasticus B316 Clostridia Clostridiales bpr_I1169 bpr_I1170, bpr_I1171 bpr_I1172, bpr_I1173, bpr_I1174 Blautia sp. KLE 1732 Clostridia Clostridiales HMPREF1547_00349 HMPREF1547_00348, HMPREF1547_00346, HMPREF1547_00344, HMPREF1547_00347 HMPREF1547_00343, HMPREF1547_00342 Desaci_1027, Desaci_1028 Desaci_1029, Desaci_1030, Desaci_1031, Desulfosporosinus acidiphilus SJ4 Clostridia Clostridiales Desaci_1026 Desaci_1032 Thermoanaerobacter Clostridia thermohydrosulfuricus WC1 Thermoanaerobacter sp. X514 Thermoanaero TthWC1_1222 bacterales Clostridia Thermoanaero Teth514_0222 bacterales Thermoanaerobacter siderophilus Clostridia SR4 Thermoanaerobacter wiegelii Clostridia Thermoanaero Thewi_0284 TthWC1_1219, TthWC1_1218, TthWC1_1220 TthWC1_1217, TthWC1_1216 Teth514_0223, Teth514_0225, Teth514_0226, Teth514_0227, Teth514_0224 Teth514_0228 ThesiDRAFT1_0298, ThesiDRAFT1_0296, ThesiDRAFT1_0295, ThesiDRAFT1_0297 ThesiDRAFT1_0294, ThesiDRAFT1_0293 Thewi_0285, Thewi_0286 Thewi_0287, Thewi_0288, Thewi_0289, bacterales Clostridia subsp. mathranii str. A3 Thermoanaerobacter italicus Ab9 ThesiDRAFT1_0299 bacterales Rt8.B1 Thermoanaerobacter mathranii Thermoanaero TthWC1_1221, Thermoanaero Thewi_0290 Tmath_0325 Tmath_0326, Tmath_0327 Tmath_0328, Tmath_0329, Tmath_0330 Thit_0242 Thit_0243, Thit_0244 Thit_0245, Thit_0246, Thit_0247 TepRe1_1843 TepRe1_1842, TepRe1_1840, TepRe1_1839, TepRe1_1838 bacterales Clostridia Thermoanaero bacterales Tepidanaerobacter acetatoxydans Clostridia Re1 Thermoanaerobacter bacterales Clostridia tengcongensis MB4 Thermoanaerobacterium saccharolyticum JW/SL-YS485 Thermoanaero Thermoanaero TepRe1_1841 TTE0286 TTE0287, TTE0288 TTE0289, TTE0290, TTE0291, TTE0292 Tsac_0140 Tsac_0139, Tsac_0138 Tsac_0137, Tsac_0136, Tsac_0135, Tsac_0134 bacterales Clostridia Thermoanaero bacterales 11 Bacteria Class Order Sensor TCS ABC transporter Thermoanaerobacterium Clostridia Thermoanaeroba Thexy_2027 Thexy_2026, Thexy_2025 Thexy_2024, Thexy_2023, Thexy_2022, xylanolyticum LX-11 Thermoanaerobacterium cterales Clostridia Thermoanaeroba Clostridia Thermoanaeroba thermosaccharolyticum M0795 Mahella australiensis 50-1 BON Thexy_2021 Thethe_02431 cterales Mahau_2373 cterales Halanaerobium saccharolyticum Clostridia Halanaerobiales HSACCH_02141 subsp. saccharolyticum DSM Thethe_02430, Thethe_02428, Thethe_02427, Thethe_02426, Thethe_02429 Thethe_02425 Mahau_2372, Mahau_2370, Mahau_2369, Mahau_2368, Mahau_2371 Mahau_2367, Mahau_2366 HSACCH_02140, HSACCH_02138, HSACCH_02137, HSACCH_02139 HSACCH_02136 6643 Bacillus stratosphericus LAMA Bacilli Bacillales C883_1913 C883_1919, C883_1936 C883_1949, C883_1955, C883_1964 Bacilli Bacillales BSONL12_13411 BSONL12_13416, BSONL12_13431, BSONL12_13436, BSONL12_13421 BSONL12_13441 BaLi_c04600, BaLi_c04620, BaLi_c04630, BaLi_c04640 585 Bacillus sonorensis L12 Bacillus licheniformis 9945A Bacilli Bacillales BaLi_c04590 BaLi_c04610 Bacillus sp. M 2-6 Bacilli Bacillales BAME_09220 BAME_09210, BAME_09190, BAME_09180, BAME_09170 BAME_09200 Bacillus bataviensis LMG 21833 Bacilli Bacillales BABA_14827 BABA_14832, BABA_14842, BABA_14847, BABA_14852 BABA_14837 Bacillus pumilus ATCC 7061 Bacilli Bacillales BAT_0665 BAT_0664, BAT_0663 BAT_0662, BAT_0661, BAT_0660 Bacillus sp. 1NLA3E Bacilli Bacillales B1NLA3E_05300 B1NLA3E_05305, B1NLA3E_05315, B1NLA3E_05320, B1NLA3E_05310 B1NLA3E_05325 B1040_010100007699, B1040_010100007689, Bacillus sp. 10403023 Bacilli Bacillales B1040_0101000077 04 B1040_010100007694 B1040_010100007684, B1040_010100007679 Bacillus sp. HYC-10 Bacilli Bacillales BA1_08141 BA1_08136, BA1_08131 BA1_08126, BA1_08121, BA1_08116 12 Bacteria Class Order Bacillus sp. NRRL B-14911 Bacilli Bacillales Sensor B14911_12712 TCS ABC transporter B14911_12707, B14911_12692, B14911_12687, B14911_12702, B14911_12682 B14911_12697 Anoxybacillus flavithermus WK1 Bacilli Bacillales Aflv_1307 Aflv_1308, Aflv_1309 Aflv_1310, Aflv_1311, Aflv_1312 Anoxybacillus sp. DT3-1 Bacilli Bacillales F510_0891 F510_0890, F510_0889 F510_0888, F510_0887, F510_0886 Anoxybacillus sp. SK3-4 Bacilli Bacillales C289_0603 C289_0602, C289_0601 C289_0600, C289_0659, C289_0658 Geobacillus thermoglucosidans Bacilli Bacillales GT20_0220 GT20_0221, GT20_0222 GT20_0223, GT20_0224, GT20_0225 Geobacillus kaustophilus HTA426 Bacilli Bacillales GK3210 GK3209, GK3208 GK3207, GK3206, GK3205 Geobacillus thermodenitrificans Bacilli Bacillales GTNG_3129 GTNG_3128, GTNG_3126, GTNG_3125, GTNG_3124 TNO-09.020 NG80-2 Geobacillus thermoleovorans GTNG_3127 Bacilli Bacillales CCB_US3_UF5 GTCCBUS3UF5_3610 GTCCBUS3UF5_36090, GTCCBUS3UF5_36060, 0 GTCCBUS3UF5_36080 GTCCBUS3UF5_36050, GHH_c33010 GHH_c33000, GHH_c32280, GHH_c32270, GHH_c32260 GTCCBUS3UF5_36040 Geobacillus sp. GHH01 Bacilli Bacillales GHH_c32290 Geobacillus sp. C56-T3 Geobacillus sp. JF8 Bacilli Bacilli Bacillales Bacillales GC56T3_3222 M493_16640 GC56T3_3221, GC56T3_3219, GC56T3_3218, GC56T3_3220 GC56T3_3217 M493_16635, M493_16625, M493_16620, M493_16615 M493_16630 Geobacillus sp. Y4.1MC1 Bacilli Bacillales GY4MC1_0228 GY4MC1_0229, GY4MC1_0231, GY4MC1_0232, GY4MC1_0230 GY4MC1_0233 Paenibacillus sp. JDR-2 Bacilli Bacillales Pjdr2_1852 Pjdr2_1853, Pjdr2_1854 Pjdr2_1855, Pjdr2_1856, Pjdr2_1857 Paenibacillus sp. Y412MC10 Bacilli Bacillales GYMC10_1382 GYMC10_1383, GYMC10_1386, GYMC10_1387, GYMC10_1384 GYMC10_1388 13 Bacteria Class Paenibacillus dendritiformis C454 Bacilli Order Bacillales Sensor TCS ABC transporter PDENDC454_15944, PDENDC454_15954, PDENDC454_15959, PDENDC454_15949 PDENDC454_15964 C812_02866 C812_02865, C812_02864 C812_02863, C812_02862, C812_02861 PDENDC454_15939 Paenibacillus barengoltzii G22 Bacilli Bacillales C812_03378 C812_03379, C812_03380 C812_03381, C812_03382, C812_03383 Paenibacillus mucilaginosus K02 Bacilli Bacillales B2K_31410 B2K_31405, B2K_31400 B2K_31395, B2K_31390, B2K_31385 Paenibacillus curdlanolyticus Bacilli Bacillales PaecuDRAFT_0108 PaecuDRAFT_0109, PaecuDRAFT_0111, PaecuDRAFT_0112 YK9 PaecuDRAFT_0110 14 Table S2. Transcriptional fold-changes of C. beijerinckii genes xylFII, xylG and xylH in E. coli mutant strains. Strains Transcriptional level (mean fold change±SD) xylFII xylG xylH K12xylEFGH-pUC118 1.00±0.69 1.00±0.20 1.00±0.08 K12xylEFGH-pUC118-cxyl 0.52±0.68 1.72E+04±1.99E 3.03E+04±3.31E GH +03 +03 K12xylEFGH-pUC118-cxyl 1.13E+04±5.28E 1.02E+04±8.90E 1.38E+04±3.77E FIIGH +02 +02 +02 Samples were harvested after 4 h incubation in LB medium. The rRNA 16S gene (rrsB) was used as the internal control. 15 Table S3. Strains and plasmids used in this study. Strain or plasmid Relevant genotype or description Source or reference 8052 Wild type NCIMB 8052lytS lytS::intron/pWJ1-lytS This study 8052yesN yesN::intron/pWJ1-yesN This study 8052xylFII xylFII::intron/pWJ1-xylFII This study 8052xylF xylF::intron/pWJ1-xylF This study 8052xylG xylG::intron/pWJ1-xylG This study C. beijerinckii 8052xylH xylH::intron/pWJ1-xylH This study 8052lytS-ptb-lytS 8052lytS complemented with plasmid ptb-lytS This study 8052yesN-ptb-yesN 8052yesN complemented with plasmid ptb-yesN This study 8052xylFII-ptb-xylFII 8052xylFII complemented with plasmid ptb-xylFII This study Top 10 General cloning host strain Invitrogen K12 Wild type Takara K12xylE E. coli K12 with xylE inactivated CGSC E. coli K12 with xylEFGH inactivated This study E. coli K12xylEFGH Rosetta (DE3) - - - F ompT hsdSB(RB mB ) gal dcm λ(DE3 [lacI lacUV5-T7 Novagen gene 1 ind1 sam7 nin5]) pLysSRARE (CamR) Validation reporter strain Host strain for bacterial two-hybrid analysis Stratagene pMD-18T TA-cloning vector Takara pUC118 Expression vector in E. coli Novagen pUC118-cxylGH Vector for overexpressing xylGH from C. beijerinckii This study pUC118-cxylFGH Vector for overexpressing xylFGH from C. beijerinckii This study pUC118-cxylFIIGH Vector for overexpressing xylFIIGH from C. beijerinckii This study Plasmids pWJ1 37 Derived from pSY6 , with pCB102 replicon to replace This study pIM13 replicon, for gene inactivation by Targetron method pWJ1-lytS Vector for intron insertion in lytS at 821/822 nt This study pWJ1-yesN Vector for intron insertion in yesN at 285/286 nt This study pWJ1-xylFII Vector for intron insertion in xylFII at 468/469 nt This study pWJ1-xylF Vector for intron insertion in xylF at 492/493 nt This study pWJ1-xylG Vector for intron insertion in xylG at 711/712 nt This study pWJ1-xylH Vector for intron insertion in xylH at 461/462 nt This study pQ8 Vector for overexpressing proteins with a N-terminal (Sun et al., 2013) MBP-tag in E. coli pQ8-yesN Vector for overexpressing YesN protein in E. coli This study pET-32a Vector for overexpressing proteins in E. coli Invitrogen pET-32a-xylR Vector for overexpressing XylR protein in E. coli This study pET-32a-mbp Vector for overexpressing MBP protein in E. coli This study pET-32a-pxylFII Vector for overexpressing XylFII(25-326) protein in E. coli This study pET-32a-plytS Vector for overexpressing LytS(1-134) protein in E. coli This study 16 Strain or plasmid Relevant genotype or description Source or reference pET-32a-pxylFII-HA Vector for overexpressing XylFII(25-326) protein with a This study C-terminal HA-tag in E. coli pET-32a-Flag-plytS Vector for overexpressing LytS(1-134) protein with a This study N-terminal Flag-tag in E. coli pET-32a-xylF-HA Vector for overexpressing XylFII protein with a C-terminal This study HA-tag in E. coli placZFT lacZ reporter gene fusion vector Offered by Prof. Peter Dürre (Feustel et al., 2004) pIMPI-lacZ Derived from placZFT to determine β-Galactosidase activity This study pIMP1-lacZxylFII lacZ reporter gene driven by xylFII promoter This study pIMP1-lacZlytS lacZ reporter gene driven by the intergenic region between This study xylFII and lytS pIMP1-lacZxylF lacZ reporter gene driven by xylFGH promoter This study pIMP1 Expression vector in C. beijerinckii with pIM13 replicon and Offered by Prof. ptb promoter Papoutsakis E.T. (Mermelstein and Papoutsakis, 1993) ptb-lytS lytS overexpression vector derived from pIMP1 This study ptb-yesN yesN overexpression vector derived from pIMP1 This study ptb-xylFII xylFII overexpression vector derived from pIMP1 This study ptb-xylFGH xylFGH overexpression vector derived from pIMP1 This study ptb-xylFIIGH xylFIIGH overexpression vector derived from pIMP1 This study pXY1 Expression vector in C. beijerinckii derived from pIMP1, with This study pCB102 replicon to replace pIM13 replicon pXY1-Flag-lytS Vector for subcellular location of LytS protein with a This study N-terminal Flag-tag pXY1-xylFII-HA Vector for subcellular location of XylFII protein with a pXY1-xylF-HA Vector for subcellular location of XylF protein with a This study C-terminal HA-tag This study C-terminal HA-tag pBT Bacterial two-hybrid system bait plasmid Stratagene pTRG Bacterial two-hybrid system target plasmid Stratagene Positive control bait plasmid for bacterial two-hybrid system Stratagene Positive control target plasmid for bacterial two-hybrid system Stratagene LytS(1-134) expression plasmid for bacterial two-hybrid This study pBT-LGF2 pTRG-Gal11 p pBT-plytS system pTRG-pxylFII XylFII(25-326) expression plasmid for bacterial two-hybrid This study system pTRG-xylF XylF expression plasmid for bacterial two-hybrid system 17 This study Table S4. Co-transcription analysis and qRT-PCR primers used in this study. Primer name Sequence (5’→3’) Description xylFII-lytS co-s AAGCGAGGAGATGATAAA Forward primer for xylFII-lytS co-transcription analysis xylFII-lytS co-a ATTCTTGGCTGCTACAAA Reverse primer for xylFII-lytS co-transcription analysis lytS-yesN co-s GAAGGCAAAGGGACTAAA Forward primer for lytS-yesN co-transcription analysis lytS-yesN co-a CAAGCACAGGCAATAAAG Reverse primer for lytS-yesN co-transcription analysis yesN-xylF co-s TGAAGGTGTTAGTCCTG Forward primer for yesN-xylF co-transcription analysis yesN-xylF co-a CATTGCTAGATGTTTGTG Reverse primer for yesN-xylF co-transcription analysis xylF-xylG co-s AGATGGCTAAAGGTGAA Forward primer for xylF-xylG co-transcription analysis xylF-xylG co-a TTTCCAGAGTAAGACCC Reverse primer for xylF-xylG co-transcription analysis xylG-xylH co-s GAAATAAAGGCAAGTCT Forward primer for xylG-xylH co-transcription analysis xylG-xylH co-a TACCACTGTTGGGATAG Reverse primer for xylG-xylH co-transcription analysis xylFII rt-s AGAGCTGCTAAAGAAAGA Forward qRT-PCR primer for xylFII-lytS-yesN xylFII rt-a TAACTACTGGAATACCCT Reverse qRT-PCR primer for xylFII-lytS-yesN xylF rt-s TATGGACGACCTAAGACT Forward qRT-PCR primer for xylFGH xylF rt-a GCTATTGATTCACCGTTAT Reverse qRT-PCR primer for xylFGH xylAI rt-s CCTTATCTTATTGGCACA Forward qRT-PCR primer for xylAI xylAI rt-a AACGCAACTATCTCATCT Reverse qRT-PCR primer for xylAI xylB rt-s GTATTGGATTAAGTGGGC Forward qRT-PCR primer for xylB xylB rt-a GTTAATGCAGGATTACCA Reverse qRT-PCR primer for xylB xylR rt-s ATCGTTGGAATCTACAG Forward qRT-PCR primer for xylR xylR rt-a GTCTAACTCGCATACTT Reverse qRT-PCR primer for xylR r16s rt-s TAAAGGAGTAATCCGCTATG Forward qRT-PCR primer for 16S rRNA r16s rt-a TTATCGTCCCTGAAGACAG Reverse qRT-PCR primer for 16S rRNA 18 Supplementary References Feustel, L., Nakotte, S., and Durre, P. (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70: 798-803. Mermelstein, L. D., and Papoutsakis, E. T. (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59: 1077-1081. Sun, P., Zhao, Q., Yu, F., Zhang, H., Wu, Z., Wang, Y., et al. (2013) Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc 135: 1540-1548. 19