Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Status of 100 W Rod System at LZH Ralf Wilhelm Martina Brendel, Carsten Fallnich, Maik Frede, René Gau, Herbert Welling, Ivo Zawischa Laserzentrum Hannover e. V. Hollerithallee 8 D-30419 Hannover Germany ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Outline Modeling •Overview •Results Experimental results •Integrated Diode Units •Pump Optics •Pre-Experiments Resumé/Outlook ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Modeling/Overview pump light distribution Finite Element Method for calculating •temperature distribution •mechanical stress •deformation •ray tracing •analytical approximation •experimental data heat generation gain wave propagation through inhomogenous medium •finite differencing •split step fourier approach cooling calculation of optical properties k-vector •thermal lens •stress-induced birefringence ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 100 W Laser Head HR 808 coating for double pass 3 mm diameter 54 mm length •end-pumped rods reduce thermal gradient in z-direction ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 100 W Laser Head undoped end caps 3 mm diameter 54 mm length •end-pumped rods thermal lensing consists of two parts thermal part via dn / dT end effect (bulging of end surface) reduced by undoped endcaps ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 100 W Laser Head 90° quartz rotator 3 mm diameter 54 mm length •end-pumped rods •undoped endcaps reduce absolute temperature and thermal lens •90° quartz rotator compensates for birefringence ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account wavelength/temperature dependent properties wavelength dependent absorption coefficient ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account wavelength/temperature dependent properties wavelength dependent absorption coefficient temperature dependent heat conducitvity ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account wavelength/temperature dependent properties wavelength dependent absorption coefficient temperature dependent heat conducitvity temperature dependent expansion coefficient ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account wavelength/temperature dependent properties wavelength dependent absorption coefficient temperature dependent heat conducitvity temperature dependent dn/dT temperature dependent expansion coefficient ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Model 3 mm diameter 54 mm length assumption: cylinder symmetrical pump light distribution •model takes into account wavelength/temperature dependent properties wavelength dependent absorption coefficient temperature dependent heat conducitvity temperature dependent expansion coefficient temperature dependent dn/dT ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution •solution of time independent heat conduction equation by FEM (ANSYS) 1/4 of rod for symmetry reasons 20.1°C 83.7°C ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Mechanical Stress/Von Mises Equivalent Stress •fracture limit for YAG 130 thru 260 MPa 0.0 MPa 41.3 MPa ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Lens/Abberations d2 D(r ) 2 OPD (r , ) dr L Opt . Path dz n( x, y, z; T ) 0 28 Optical Path Difference, 250 W 26 OPD, deviation from ideal lens Thermal lens 7.0 m -1 0,10 OPD-OPDideal[m] OPD [m] 0,15 24 22 20 18 -0,2 OPD parabolic fit 0,0 0,2 0,4 0,6 0,8 1,0 0,05 0,00 1,2 -0,05 1,4 1,6 r [mm] -0,10 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 r [mm] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Fox/Li Approach Iterative Solution of Kirchhoff integral equations initial distributed E(x,y,z0) (e. g. noise) medium free propagation mirror/aperture free propagation •inhomogenous distributed gain, refractive index, birefringence concentrated in gain/phase sheets •propagation between gain/phase sheets and in free space described by FFT propagator medium free Propagation mirror/aperture output power beam quality free Propagation no convergence ? yes ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 First Results test resonator (plane-plane) •mode diameter in rod 1 mm O.C. L1 L2 L3 20 apertures -4.0 Diopters Output Power [W] L1=10 mm L2=100 mm L3=400 mm 15 10 5 0 90 100 110 120 130 140 Pump Power [W] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 First Results 2.188E-4 -- 2.5E-4 1.875E-4 -- 2.188E-4 1.563E-4 -- 1.875E-4 1.25E-4 -- 1.563E-4 9.375E-5 -- 1.25E-4 6.25E-5 -- 9.375E-5 3.125E-5 -- 6.25E-5 0 -- 3.125E-5 20 Output Power [W] 100 W Y Axis 150 15 10 5 0 100 100 150 150 120 W X Axis Y Axis 2.625E-4 -- 3E-4 2.25E-4 -- 2.625E-4 1.875E-4 -- 2.25E-4 1.5E-4 -- 1.875E-4 1.125E-4 -- 1.5E-4 7.5E-5 -- 1.125E-4 3.75E-5 -- 7.5E-5 0 -- 3.75E-5 100 100 150 X Axis 90 100 110 120 130 140 Pump Power [W] •polarisation eigenstates ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 First Results/Birefringence Compensation test resonator (plane-plane) O.C. L1 50 L2 L3 40 apertures L1=10 mm0,0020 L2=100 mm -4.0 diopters L3=400 mm Z Axis 0,0015 Output Power [W] quartz rotator 30 20 10 0,0010 0 0,0005 45 50 55 60 65 Pump 150 Power per Rod [W] 0,0000 100 xis XA xis YA 150 ©LZH 100 Livingston, La.; 22-03-2002 LIGO-G020087-00-2 First Results/100 W Head 80 75 70 0,0010 60 55 0,0008 50 45 0,0006 Z Axis Output Power [W] 65 40 35 0,0004 30 0,0002 25 20 225 0,0000 200 230 235 240 Pump Power per Rod [W] 300 245 250 xis XA xis YA 300 200 ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 First Results/100 W Head w/o Abberations Output Power vs. Pump Power 250 200 150 0,004 100 50 0 220 225 Intensity [arb. units] Output Power [W] 0,005 Data: AUS69_F Model: gaussstr Chi^2 = 1.3554E-10 wnull 555.9773 a 0.00433 xnull 0 ±0 ±0.52207 ±3.5139E-6 0,003 2 M <1.05 0,002 0,001 230 235 240 Pump Power per Rod [W] 0,000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 distance from optical axis [m] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Abberations/End Pumped vs. Transversally Pumped OPD, deviation from ideal lens 0,15 End Pumped Transversally Pumped OPD-OPDideal[m] 0,10 0,05 <10 nm 0,00 -0,05 -0,10 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 r [mm] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Pump Concepts mode selective pumping 10 x 30 W Laser Rod Glas Rod Objektiv 4500 10 10 8 8 6 6 4000 3500 2000 Y 2500 Y W/cm 2 3000 w = 1mm 1500 1000 4 4 2 2 500 0 20 40 60 80 100 x 2 4 6 8 10 2 4 6 8 10 X X ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Pump Concepts mode selective pumping 10 x 30 W Glas Rod Laser Rod Objektiv 9000 10 10 8 8 6 6 8000 7000 5000 4000 w = 2 mm Y Y W/cm 2 6000 4 4 2 2 3000 2000 0 20 40 60 80 100 x 2 4 6 8 10 2 X 4 6 8 10 X ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Homogenization of Pump Light Glas Rod 3x30mm simulation 10 8 8 6 6 Y Y 10 x 800 µm 10 4 4 2 2 2 4 6 10 measured 30 x 800 µm 8 10 2 4 6 10 X 8 8 10 X 8 6 6 4 4 2 2 2 4 6 8 ©LZH 10 2 4 6 8 10 Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 5000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 2000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 1500 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 1000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 750 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Temperature Distribution varying with pump spot diameter (pump power kept constant) 500 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Thermal Modeling/Maximum Temperature Maximum Temperature vs. Pump Spot Radius maximum temperature [°C] 140 130 120 110 100 90 80 0 1000 2000 3000 4000 5000 pump spot radius [m] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 5000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 2000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 1500 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 1000 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 750 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Von Mises Stress varying with pump spot diameter (pump power kept constant) 500 m ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Mechanical Stress/Von Mises Equivalent Stress varying with pump spot diameter (pump power kept constant) Maximum Equivalent Stress vs. Pump Spot Radius maximum equivalent stress [MPa] 150 140 130 120 110 100 90 80 70 60 50 40 0 1000 2000 3000 4000 5000 pump spot radius [m] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Experimental/Diode Temperature Control PC Hardwa re In terlock P T1 00 He at Sink PT1000 Pel ti er D/A Chang er Photo-Diode A/ D Chang er Laser-Diode Power Supply Light Bus d igital PID -Co ntro ller Peltier A mplifie r laser diode JENOPTIK 30 W, fiber coupled, NA 0.22; 800 m temperature resolution: 0.01K temperature fluctuations: 2-3 digits temperature stability better than 0.05K ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Experimental/Diode Box •4 boxes user interface 4 systems (boxes) • each 10 X 30 W fiber-coupled diodes 1200 W pump Power 40 temperatures 4 current controls (1 per box) laser diode (10) heat sink (2) ADC/DAC upcoming: • 40 diode power measurements laser power control for each diode overtemp interlocks peltier drivers ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Pump Chamber water flow 2.5 cm ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Pre-experiments laser rod pump optic TR 75 70 multimode 65 60 PL [W] 55 50 45 40 35 M2 < 3 30 25 140 160 180 200 220 240 260 PD [W] ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Birefringence Compensated Resonator Faraday Rotator thermal lens image Faraday Rotator FR laser rod TR pump optic ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Resumé •Modeling •100 W of output power will be achieveable •abberations will have to be compensated for •abberations are comparable in end pumped and transversally pumped rod •Experimental •4 diode boxes have been set up (1200 W of pump power) •temperature stabilization works •pump light homogenization has been demonstrated •45 W single mode and 75 W multi mode laser has been demonstrated (single rod, no compensation) ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2 Outlook •optimize overlap of pump light distribution and mode diameter •compare calculated abberations to experiment (Shack-Hartmann sensor, diploma thesis P. Huke) •evaluate conductive cooling (coating of rod‘s shell) -reduce abberations (lower absolute temperature) -avoid contact of cooling fluid with rod •compensate for abberations ? ©LZH Livingston, La.; 22-03-2002 LIGO-G020087-00-2