Download Reações de redução e oxidação de compostos carbonílicos

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
QFL0342 Reatividade de Compostos Orgânicos (2016)
Reações de redução e oxidação de
compostos carbonílicos
Reductive amination
O + NH3
O + RNH2
O + R2NH
H2, Ni
or NaBH3CN
H2, Ni
CH NH2
1o amine
CH NHR
2o amine
CH NR2
3o amine
or NaBH3CN
H2, Ni
or NaBH3CN
Preparation of Amines—Reductive Amination
[1]
Nucleophilic attack of NH3 on the carbonyl group forms an imine.
[2]
Reduction of the imine forms an amine.
Preparation of Amines—Reductive Amination
• The most effective reducing agent for this reaction is sodium cyanoborohydride
(NaBH3CN).
Compare to NaBH4
Preparation of Amines—Reductive Amination
Retrosynthetic analysis
Preparation of Amines—Reductive Amination
• How to prepare 2o and 3o amines? Which starting material would you use
for it?
Preparation of Amines—Reductive Amination
• How would you prepare methamphetamine?
Redução de Wolff-Kishner
8
Reações de aldeídos ou cetonas com diversos
hidretos
Redução com hidretos metálicos
• Os reagentes mais comuns usados em laboratório
para a redução de aldeídos e cetonas são NaBH4;
LiAlH4 NaH (fontes de íon hidreto H:-, um poderoso
nucleófilo)
H
H-B-H
Li + H-Al-H
H
Boro-hidreto de
sódio
H
Hidreto de lítio
alumínio
Na
H
••
+
H
Íon hidreto
Reduction of aldehyde with LiAlH4
https://www.youtube.com/watch?v=odkFRsbWLF4
Reduction of carboxylic acid with LiAlH4
LiAlH4 reage violentamente com água, metanol e outros solventes
próticos. As reduções usando LiAlH4 são realizadas em éter
dietílico ou tetra-hidrofurano (THF) anidros.
LiAlH4 + 4 H2O → LiOH + Al(OH)3 + 4 H2
https://www.youtube.com/watch?v=odkFRsbWLF4
Redução com LiAlH4
O
Éter dietílico
4 RCR + LiAlH 4
ou THF
-
+
(R 2 CHO) 4 Al Li
tetralcoxi aluminato
H2 O
OH
4 RCHR + Sais de alumínio
Uso de LiAlH4 em reações de redução
reduzidos por NaBH4
R
O
O
O
O
C
C
C
C
X
haletos
de acila
R
O
R
anidridos
R
não são reduzidos por NaBH4
O
H
aldeídos
R
C
O
O
R'
cetonas
reduzidos por LiAlH4
R
C
OR
ésteres
R
C
O
NH2
amidas
R
C
OH
ácidos
carboxílicos
• Reduções com NaBH4 podem ser realizadas em metanol
aquoso, em metanol puro, ou em etanol
• Um mol de NaBH4 reduz quatro mols de aldeído e cetona
O
4 RCH + NaBH 4
metanol
+ H 2O
O)
B
Na
(RCH2 4
Um tetralcoxi borato
4 RCH 2 OH + Boratos
Redução com NaBH4
H
+
O
Na H-B-H + R-C-R'
H
O BH 3 Na
+
R-C-R'
H
from
hydride
A partirthe
do agente
redutor
reducing
agent
H2 O
OH
R-C-R'
H
Afrom
partir da
água
water
Quimiosseletividade nas reduções
O
RCH=CHCR'
1 . NaBH 4 4
2 . HH2O2 O
O
RCH=CHCR'
+
H2
Rh
OH
RCH=CHCHR'
O
RCH 2 CH 2 CR'
DIBAL-H (hidreto de diisobutilaluminio)
(Hidreto mais brando)
(i-Bu2AlH)2
• Treatment of a nitrile with a milder reducing agent such as DIBAL-H followed by water
forms an aldehyde.
Redução de ésteres com DIBALH
• O hidreto de di-isobutilalumínio (DIBALH) a -78°C reduz
seletivamente ésteres a aldeídos
– a -78°C, o intermediário somente é liberado após a
hidrólise ácida.
• With DIBAL-H, nucleophilic addition of one equivalent of hydride forms an anion which is
protonated with water to generate an imine. The imine is then hydrolyzed in water to
form an aldehyde.
O
reduz
C
R
H
reduz lentamente
via
alcool
ou DIBAL
não reduz
R
C
H
iminas
O
O
NH
R
C
H
aldeídos
R
C
LiAlH4
o
O C
O
O
R'
cetonas
R
C
via
cloretos
de acila
OR
R
C
O
NH2
ésteres
amidas
R
R
R
C
OH
ácidos
carboxílicos
NaCNBH3
NaBH4
LiBH4
LiAlH4
BH3
OH
R
NHR
R
OH
R
R
OH
NR2
R
OH
Equivalentes biológicos de hidretos metálicos
NADH
(hidreto biológico)
NAD+
nicotinamida adenina
dinucleotídeo
(forma oxidada)
NADH
nicotinamida adenina
dinucleotídeo reduzida
NAD+
NAD+
NAD+
Reduções quimiosseletivas por enzimas
Oxidation of Aldehydes and Ketones
• Aldehydes are readily oxidized to carboxylic acid but ketones are unreactive
(except under the most vigorous conditions).
• Aldehydes are more easily oxidized because they posses a hydrogen atom
bonded to the carbonyl carbon. This hydrogen atom can be removed as a proton
with the final result being the oxidation (loss of hydrogen) from the original
aldehyde. Ketones have no expendable carbonyl-hydrogen bond.
Oxidation of Aldehydes and Ketones
• Many oxidizing agents will convert aldehydes to carboxylic
acids. Some of these are Jones reagent, hot nitric acid and
KMnO4.
O
O
CH3(CH2)4
C
H
Jones
CH3(CH2)4
C
OH
• One drawback to the Jones reagent is that it is acidic. Many
sensitive aldehydes would undergo acid - catalyzed
decomposition before oxidation if Jones reagent was used
Oxidation of Alcohols and aldehydes with
cromic acid
alcohol
aldehyde
Ester chromate
gem-diol
Carboxylic acid
A Milder Oxidizing Agent
• For acid sensitive molecules a milder oxidizing agent such as the
silver ion (Ag+) may be used. A dilute ammonia solution of silver
oxide, Ag2O, (Tollens reagent) oxidizes aldehydes in high yield without
harming carbon-carbon double bonds or other functional groups.
Oxidizing Agents in Organic Chemistry
CrO3/H2SO4
N
H
CrO3Cl
H2CrO4
Pyridinium chlorochromate
(PCC)
Chromic Acid
(Jones Reagent)
• PCC Generally a Mild Oxidant (1° Alcohol  Aldehyde)
• Jones Reagent Harsher Oxidant (1° Alcohol  Carboxylic Acid)
• Alcohol Often Dissolved in Acetone While Jones Reagent Added
General Oxidizing Agent Selection
• Just as in Reductions, Oxidation Products Depend on Reagent
• Generally Don’t Oxidize 3° Alcohols (No Texas Carbons)
MeOH
1° Alcohol
2° Alcohol
3° Alcohol
PCC
H2C=O
Aldehyde
Ketone
No
Reaction
Cr6+
H2SO4
HCO2H
Carboxylic
Acid
Ketone
No
Reaction
• PCC Good For Aldehydes From Primary Alchols
• Cr6+/H2SO4 Reagents, KMNO4 Primary  Carboxylic Acids
• Use What You Like For Most Ketones