Download Cliquez pour modifier le style du titre

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Power over Ethernet wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Islanding wikipedia , lookup

Electric power system wikipedia , lookup

History of electric power transmission wikipedia , lookup

Spectral density wikipedia , lookup

Audio power wikipedia , lookup

Wireless power transfer wikipedia , lookup

Electrification wikipedia , lookup

Distribution management system wikipedia , lookup

Buck converter wikipedia , lookup

Power electronics wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Amtrak's 25 Hz traction power system wikipedia , lookup

Resonant inductive coupling wikipedia , lookup

Rectiverter wikipedia , lookup

Power engineering wikipedia , lookup

Voltage optimisation wikipedia , lookup

Utility frequency wikipedia , lookup

Distributed generation wikipedia , lookup

AC adapter wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Mains electricity wikipedia , lookup

Alternating current wikipedia , lookup

Transcript
«A 32-bit DSP Ultra Low Power
accelerator »
E. Beigné
[email protected]
CEA LETI MINATEC, Grenoble, France
www.cea.fr
&
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
|2
Low
Power le
SoC
challenges
Cliquez pour
modifier
style
du titre
Technology
Application
Process variability
Applicative flexibility
Unpredictable load
Aging
Multi-Core
Architectures
Architecture
Massively parallel
architectures
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
|3
Energy
Efficiency
Cliquez pour modifier
le style
du titre
Power consumption management follows two
objectives today :
Reduce the overall power
or Increase the global energetic efficiency
Performance does no more only mean ‘High
frequency’ but also ‘Low power’
High Performance/ Low Power trade-off difficult
to reach
Mimimum power consumed at a given frequency
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
|4
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
|5
Dynamic
& Frequency
Scaling
Cliquez
pourVoltage
modifier
le style du
titre
Power Domain
DVFS for power-performance trade-off
V regulator
Ctrl.
F generator
Core
∝
∝
1
∙
∙
∙
°
∝
∙
Voltage
&
"
Vdd & F are adjusted to
ensure performance at
minimum consumption
Power
Frequency
!
Frequency
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
|6
Adaptive
& Frequency
Scaling
Cliquez
pourVoltage
modifier
le style du
titre
Power Domain
AVFS approach
Fmax & PVT monitors
Data fusion & adjustment
V regulator
Ctrl.
F generator
Core
∝
Adjustment
Data fusion
∝
1
∙
∙
∙
°
∝
∙
Frequency
!
"
F is adjusted to reach
Fmax for the given
conditions (Vdd, T°…)
Voltage
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
|7
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
|8
Body Biasing
Multi-Vle
UTBBdu
FD-SOI
T in
Cliquez
pourand
modifier
style
titre
RVT
VBNMOS
Bulk-like Well
NMOS
PMOS
VBPMOS
VBPMOS
-300mV
p-Well
3V
VBNMOS
n-Well
-3V
300mV
GND
LVT
VBPMOS
Flip-Well
NMOS
PMOS
VBNMOS
VBPMOS
-3V
300mV
VBNMOS
n-Well
p-Well
-300mV
3V
GND
[Flatresse et al. ISSCC 2013]
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
|9
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
| 10
AVFS
with
Adaptive
Biasing
Cliquez
pour
modifier
le Body
style du
titre
ABB in FD-SOI
Power Domain
Ultra Wide Voltage Range (UWVR)
Body Bias increases efficiency
V regulator
Ctrl.
F generator
Core
BB generator
Adjustment
∝
Data fusion
∝
1
Frequency
UWVR
∙
∙
°
∝
∙
!
"
Eff.
0
1.3V
Vdd & Vbb should be
chosen to minimize
consumption
Voltage
&
∙
Source: http://www.st.com/web/en/about_st/learn_fd-soi.html
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 11
grain le
AVFS
with
ABB
Cliquez pourFine
modifier
style
du titre
Power Domain
V regulator
Ctrl.
F generator
Core
Power
Domain
BB generator
Adjustment
Power
Domain
Fine grain requires per core
actuators
Low area/complexity enable fine
grain AVFS with ABB
Concession on performance
Data fusion
Power
Domain
Granularity in complex SoC
Power
Domain
Speed
Discretization
Switching cost
Efficiency
Example of VDD
discretization
Frequency
Power
Domain
Power
Domain
Actuators’ constraints to be
considered for management
policy
Voltage
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 12
Summarizing
AVFS with
ABB indu
FD-SOI
Cliquez
pour modifier
le style
titre
VDD generator
Fmax monitor
low area for fine grain
for adaptive approach
Power Domain
V regulator
Ctrl.
F generator
Core
T° monitor
BB generator
Adjustment
for adaptive approach
Data fusion
F generator
VBB generator
low area for fine grain
&
to improve efficiency
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 13
Something new for AVFS power management
Cliquez
pour modifier le style du titre
Dynamic power management today
FD-SOI context (UWVR, increased efficiency)
New opportunity: extended Body Bias range
Source: http://www.st.com/web/en/about_st/learn_fd-soi.html
Power Domain
3 on-chip constrained actuators
Known target performance (Ftarget)
n Power Modes (PM) available
V regulator
Ctrl.
F generator
Core
BB generator
Adjustment
Data fusion
F
P
Which configuration to
minimize power?
taking into account actuators’
constraints
Vdd ↗
Vbb
&
F
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 14
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
| 15
architecture
Cliquez pour modifierDSP
le style
du titre
CODA
Serial
Interface
&
Mux
Bit Trunc
Adder
40b
TMFLT-R
Input/Output
RAM
2x1Kx32
Cordics
+
Divider
MAC
Bit
Bit
Extension
Extension
Shift
Reg.
Mux
Prog
SRAM
Data
SRAM
Address
Gen.
32b
Multiplier
Address
Gen.
Register Array
2Read-1Write
Ports 64x32b
32bit VLIW DSP core - V/F domain
Control
Comp/Select
TMFLT-S TMFLT-S
TMFLT-S
TMFLT-S TMFLT-S
TMFLT-S
PLL
© CEA. All rights reserved
Variability
Power
Control (CVP)
2015 COOL Chips– E. Beigné
| 16
Micrograph
Cliquez pour modifierChip
le style
du titre
Technology
STMicro
Transistors
Core area
&
UTBB FDSOI
28 nm
Flip-Well (LVT)
L=24nm
1 mm²
DSP
benchmark
VDD range
0.397V-1.3V
VBB range
0V/±2V
Wilson, R et al., "A 460MHz at 397mV, 2.6GHz at 1.3V, 32b VLIW DSP, embedding FMAX tracking,"
International Solid-State Circuits Conference (ISSCC), pp. 452-453, February 2014
E. Beigné, et al., JSSC 2015
© CEA. All rights reserved
FFT 1024
2015 COOL Chips– E. Beigné
| 17
Power
distribution
– Body
Biasing
Cliquez
pour
modifier le
style du
titre
Including all
biasing voltages
Thin VBB power
stripes
Body-Biasing
Supplied through
specific IOs (± 2V)
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 18
sub-set
Cliquez pourOptimized
modifier lelibrary
style du
titre
Use of available standard cells optimized for low
voltage:
Extend the subset to the Wide Voltage Range
Gate length modulation done through Poly Biasing
Keep the power-delay optimal cells in UWVR
Cells are characterized over
[0.275V-1.4V] VDD range and [0V- (±2V)] VBB range
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 19
Optimized
Pulsed-latch
FF
Cliquez pour
modifier le
style du titre
Transmission-Gate Pulsed Latches
A latch and a pulse generator
Same behavior as a conventional Master-Slave FF
Proved to be the most energy-efficient in a large portion
of the design spacee
D-to-Q
Egy/cycle
Area
(ps)
(fJ)
(µm²)
ST C2MOS
117.5
6
4,41
ST SA
46.5 (- 60 %) 12.5 (+ 208 %) 6,85 (+ 55 %)
TGPLMuxScan 30.5 (- 74 %) 7.2 (+ 20 %)
4,73 (+ 7 %)
TGPLMuxClk
26 (- 78 %)
9.1 (+ 56 %) 5,06 (+ 14 %)
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 20
Timing margins reduction in UWVR : FMAX tracking
Cliquez pour modifier le style du titre
Design in typical corner case instead of worst case
approach
Need to compensate for PVT variations in UWVR
Reduce energy per operation … or increase clock
frequency
Track the optimal Frequency/Voltage/Biasing point
Real maximum frequency is not available
Functional in the UWVR / Low area and power overhead
Two complementary solutions proposed on-chip
Replica path based CODA (ClOning DAta paths)
Timing slack sensor based TMFLT (TiMing FauLT)
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 21
Fmax tracking
(solutionle
1) style
: Pathdu
Cloning
Cliquez
pour modifier
titre
• 16 paths cloned at 1V signoff
• Correlation between FMAX and frequency predictions
– 5 slots into 21 dies @ 1V & 25°C (+4/-3% accuracy)
– 1 slot into 21 dies @ [0.8V-1.3V] & 25°C (6% accuracy)
– Not intrusive / Need complementary solution in UWVR
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 22
Fmax
tracking
(solution
2) : le
Slack
Monitoring
Cliquez
pour
modifier
style
du titre
1 TMFLT-Ring
128 TMFLT-Sensors
• Analyze the registers slack time
• 300ps detection window
• Programmable replica path
• Time-to-digital measurement
Reset_n
SEL
31
RAM
E
FF
FF
Prog.
delay
TMFLT Warning EN
Sensor
Detectio
n window
CLK
CG
reg2
FF
Clock
tree
&
reg1
0 0 0 1 1
1
SIG
© CEA. All rights reserved
slack time
2015 COOL Chips– E. Beigné
| 23
Fmax tracking (solution 2) : Slack Monitoring
Cliquez pour modifier le style du titre
• Frequency estimation
error compared to FMAX
– Error of ±4% at 1V
• Compared to worst case
PVT corner (3σ) approach
without FMAX tracking:
frequency error (%)
8
– Energy gain of 40.6% @ 0.6V
6
– Frequency gain of 24% @1V
4
2
0
-2
-4
21 dies
-6
600 700 800 900 1000 1100 1200 1300
Power Supply (mV)
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 24
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
| 25
DSP speed performance measurements
Cliquez pour modifier le style du titre
3000
Frequency (MHz)
2500
2000
1500
[email protected]
Boost
0mV
FBB 0V
Boost
500mV
FBB 0.5V
Boost
1000mV
FBB 1.0V
FBB 1.5V
Boost
1500mV
FBB 2.0V
Boost
2000mV
1GHz@570mV
1000
500
0
300
400
500
460MHz@397mV
600
700
800
900 1000 1100 1200 1300
VDD voltage (mV)
• FBB up to +2V and FMAX tracking :
– ↗ frequency up to 460MHz at minimum voltage
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 26
DSP energy performance measurements
Cliquez pour modifier le style du titre
450
Boost
0mV
FBB 0V
Energy/cycle (pJ/cycle)
400
Boost
500mV
FBB 0.5V
350
FBB 1.0V
Boost
1000mV
300
FBB 1.5V
Boost
1500mV
250
FBB 2.0V
Boost
2000mV
200
150
100
50
62pJ/cycle @ 460MHz
0
300
500
700
900
1100
1300
1500
1700
• For a fixed voltage supply :
1900
2100
2300
2500
Frequency (MHz)
– Lowest energy at 460MHz
– Power consumption : 370mW at 1V
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 27
DSP energy
Cliquez
pourperformance
modifier lemeasurements
style du titre
450
400
Boost
0mV
FBB 0V
350
Boost
500mV
FBB 0.5V
300
Energy/cycle (pJ/cycle)
+14% frequency
Boost
1000mV
FBB 1.0V
FBB 1.5V
Boost
1500mV
250
FBB 2.0V
Boost
2000mV
200
150
-20% energy/cycle
100
50
+59% frequency
0
300
500
700
900
1100
1300
1500
1700
• FBB and FMAX tracking :
1900
2100
2300
2500
Frequency (MHz)
– ↗ Frequency up to 59% (target 100pJ/cycle)
– ↘ Energy by 20% (target 1.7 GHz)
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 28
Comparison with State of the Art WVR
Cliquez pour modifier le style du titre
3000
3000
This work
22nm, INTEL, ISSCC
TI, CEVA, 40nm
TI, 40nm
Frequency (MHz)
1000
INTEL, 32nm, ISSCC
2012
MIT, TI, 28nm, ISCC
2011
CSEM
(100µW/MHz)
100
TI (200µW/MHz)
INTEL, 22nm, ISCC MIT, TI, 28nm,
ISSCC 2011
2012
10
MIT, TI, 28nm,
ISSCC 2011
INTEL, 32nm, ISCC
2012
NXP, IMEC, 32nm,
ISSCC 2011
1
00
1.2
&
0,20.2
1.4
0,4 0.4
0,6
0.6 0,8
Supply Voltage (V)
© CEA. All rights reserved
0.8 1
1,2
1
2015 COOL Chips– E. Beigné
1,4
| 29
Low power SOC challenges : Energy Efficiency
Fine-Grain AVFS solutions
FDSOI technology brings a new actuator
Fine-Grain AVFS with Body Biasing
Silicon results in FDSOI 28nm
Future IoT needs and Conclusions
&
© CEA. All rights reserved
Diego Puschini | ICDV 2014
| 30
What about
for IoT
applications?
Cliquez
pour FDSOI
modifier
le style
du titre
Energy harvesting will bring more challenges to
Voltage supplies levels
Autonomous Wireless Sensor Nodes are requiring
even more Versatility
Moving the operating range from very low power to
medium speed
Leakage is a big constraint
Possible use of Reverse Body Biasing and Poly Biasing
Analog and RF is performant
Towards fully integrated mixed-signal nodes
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 31
Conclusion
Cliquez pour modifier le style
du titre
Circuit designers are faced with conflicting requirements
Decrease the power dissipation AND Maintain the performance
In a world of increasing parametric variations
This can be met thanks to a combination of design techniques
Reduce design margins and adapt to environment
Sense&React paradigm
Leverage the technology’s possibilities
Well engineering and back-biasing in FDSOI
Take home message
Develop technology that brings additional actuators to circuit designers
This will unleash their creativity
Think about low leakage applications like IoT
Low voltage performances
Performance adaptation
&
© CEA. All rights reserved
2015 COOL Chips– E. Beigné
| 32