Download GENERAL PHYSICS PH 221-1D Test 4 (Sample)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
GENERAL PHYSICS PH 221-1D (Dr. S. Mirov)
Test 4 (Sample)
STUDENT NAME: _____Key______________ STUDENT id #: ___________________________
-------------------------------------------------------------------------------------------------------------------------------------------
ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.
NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.)
Important Formulas:
1.
Motion along a straight line with a constant acceleration
vaver. speed = [dist. taken]/[time trav.]=S/t;
vaver.vel. = x/t;
vins =dx/t;
aaver.= vaver. vel./t;
a = dv/t;
v = vo + at; x= 1/2(vo+v)t; x = vot + 1/2 at2; v2 = vo2 + 2ax (if xo=0 at to=0)
2.
Free fall motion (with positive direction )
g = 9.80 m/s2;
y = vaver. t
vaver.= (v+vo)/2;
v = vo - gt; y = vo t - 1/2 g t2; v2 = vo2 – 2gy (if yo=0 at to=0)
3.
Motion in a plane
4.
Projectile motion (with positive direction )
5.
Uniform circular Motion
vx = vo cos;
vy = vo sin;
x = vox t+ 1/2 ax t2; y = voy t + 1/2 ay t2; vx = vox + at; vy = voy + at;
vx = vox = vo cos;
x = vox t;
xmax = (2 vo2 sin cos)/g = (vo2 sin2)/g for yin = yfin;
vy = voy - gt = vo sin - gt;
y = voy t - 1/2 gt2;
a=v2/r,
T=2r/v
6. Relative motion



v PA  v PB  v BA


a PA  a PB
7.
Component method of vector addition
1
A 
A x2  A y2 ;  = tan-1 Ay /Ax;


The scalar product A a  b = a b c o s 


a  b  ( a x iˆ  a y ˆj  a z kˆ )  ( b x iˆ  b y ˆj  b z kˆ )
 
a  b = a xb x  a yb y  a zbz


The vector product a  b  ( a x iˆ  a y ˆj  a z kˆ )  ( b x iˆ  b y ˆj  b z kˆ )
A = A1 + A2 ; Ax= Ax1 + Ax2 and Ay = Ay1 + Ay2;
iˆ




a  b  b  a  ax
bx
ˆj
a
b
y
y
kˆ
a
a z  iˆ
b
bz
y
a
y
bz
 ( a y b z  b y a z ) iˆ  ( a z b x  b z a x ) ˆj  ( a x b
y
z
ax
bx
 ˆj
 bxa
y
ax
az
 kˆ
bx
bz
a
y
b
y

) kˆ
1.
Second Newton’s Law
ma=Fnet ;
2.
Kinetic friction fk =kN;
3.
Static friction fs =sN;
4.
Universal Law of Gravitation: F=GMm/r2; G=6.67x10-11 Nm2/kg2;
5.
Drag coefficient
6.
Terminal speed
7.
Centripetal force: Fc=mv2/r
8.
Speed of the satellite in a circular orbit: v2=GME/r
9.
The work done by a constant force acting on an object:
10. Kinetic energy:
D 
vt 
K 
1
C  Av
2
2
2m g
C  A
1
m v
2
W
 
 F d cos  F  d
2
11. Total mechanical energy: E=K+U
12. The work-energy theorem: W=Kf-Ko; Wnc=K+U=Ef-Eo
13. The principle of conservation of mechanical energy: when Wnc=0, Ef=Eo
14. Work done by the gravitational force:
W
g
 m gd cos
2
1.
Work done in Lifting and Lowering the object:
 K

K
f
 K
 W
i
F
a
 W
  k x
; if
g

f
K
Spring Force:
3.
Work done by a spring force:
4.
Work done by a variable force:
W
1
k x
2

s
x


W
x
W
; P
 t
Pavg 
5.
Power:
6.
Potential energy:
7.
d W
d t

 U
i
; W
2
i

 W
a
g
( H o o k 's l a w )
2.
x
K
 W ;  U
2
o
; if x
i

x ; W
s
 
1
k x
2
2
F ( x )d x
i

 
x
x
f


F  v

F ( x )d x
i
 m g ( y
f

y i )  m g  y ; if
y
i
 0 a n d U
1
k x
2
8.
Elastic potential Energy:
U ( x ) 
9.
Potential energy curves:
F ( x )  
10.
Work done on a system by an external force:
F ric tio n is n o t in v o lv e d W
i
 0; U ( y )  m g y
2
d U ( x )
; K ( x ) 
d x
  E
m e c
  K
E
 E
th

 U ( x )
m e c
  U
W h e n k in e tic fric tio n fo rc e a c ts w ith in th e s y s te m
  E
W
m e c
  E
th
  E
in t
fkd
Conservation of energy:
Pavg 
 E
; P
 t
12.
Power:
13.
Center of mass:
14.
f
Gravitational Potential Energy:
 U
11.
 0 a n d x
f
F v c o s 

; P
1
k x
2

rc o m

W
  E
  E
m e c
  E
fo r is o la te d s y s te m

1
M
d E
d t
i 1
  E
in t
m e c
  E
th
 0
;
n

th
(W = 0 )  E
m
i

ri
Newtons’ Second Law for a system of particles:

F net 

M a
c o m
3
1.
2.




dP
Linear Momentum and Newton’s Second law for a system of particles: P  M v c o m a n d F n e t 
dt

J 
Collision and impulse:

t

F ( t ) d t ; J  F a v g  t ; when a stream of bodies with mass m and
f
ti
F avg  
speed v, collides with a body whose position is fixed

p
Impulse-Linear Momentum Theorem:

 p
f
n
n
 m
 p  
 v
m  v  
 t
 t
 t

 J
i


Pi  P f f o r c l o s e d , i s o l a t e d s y s t e m
3.
Law of Conservation of Linear momentum:
4.
Inelastic collision in one dimension:
5.
Motion of the Center of Mass: The center of mass of a closed, isolated system of two colliding bodies is


p 1i  p

 p1
2 i
f

 p
2 f
not affected by a collision.
6.
Elastic Collision in One Dimension:
7.
Collision in Two Dimensions:
8.
Variable-mass system:
9.
Angular Position:
v
 vi  v
10. Angular Displacement:

m
m

 m
 m
1
1
 p1
2 ix
fx
2
v1i ;
v
2 f
2
 p
2 fx
;

m
p 1 iy  p
2m1
1  m
2 iy
v1i
2
 p1
fy
 p
2 fy
ln
rel
M
M
i
( s e c o n d ro c k e t e q u a tio n )
f
(ra d ia n m e a s u re )
   
11. Angular velocity and speed:
12. Angular acceleration:
f
 M a (firs t ro c k e t e q u a tio n )
rel
S
r
 
p 1 ix  p
R v
f
v1
avg


2
 
1
(p o s itiv e fo r c o u n te r c lo c k w is e ro ta tio n )

 
;
 t
 
;
 t
 
avg
 
d
dt
(p o s itiv e fo r c o u n te rc lo c k w is e ro ta tio n )
d 
dt
4
  
1.
angular acceleration:
o

  
o
  ot 
2
 
  
o
  )t
o
1
 t2
2
 2  (   o )
2
o
  t 
1
 t
2
v   r;
a
  r;
t
a
r
1
I
2

I 

2
r 2d m
; I 

2
r;
T

2 r
2


v
m i ri 2 f o r b o d y a s a s y s t e m o f d i s c r e t e p a r t i c l e s ;
f o r a b o d y w ith c o n tin u o u s ly d is trib u te d m a s s .
 I
 M h
4.
The parallel axes theorem: I
5.
Torque:
6.
Newton’s second law in angular form:

7.
Work and Rotational Kinetic Energy:
W
P 
dW
dt
com
2
  r F t  r F  r F s i n 
;  K
 K
v
Rolling bodies:
f
 K
i
2
f

net
 I

1
I
2


2
i
f
 d ; W
  (
f
  i ) fo r   c o n st;
i
 W
w o rk e n e rg y th e o re m fo r ro ta tin g b o d ie s
  R
com
a
com
a
com


Torque as a vector:
1
I
2

1
I com 
2
  R
K
9.
v 2
 
r

Rotational Kinetic Energy and Rotational Inertia:
K
8.
2
Linear and angular variables related:
s   r;
3.
1
(
2
  

2.
  t
o


2

1
m v
2
g s in 
1  I com / M R


 r  F ;
2
2
com
fo r ro llin g s m o o th ly d o w n th e ra m p
  r F s in   r F

 r F
5
1.
2.





l  r  p  m (r  v );
Angular Momentum of a particle:
l  r m v s in   r p

Newton’s Second law in Angular Form: 
n et


L 
3.
5.
6.
n

i1
Angular momentum of a system of particles:


4.
 rm v


 r p  r m v

d l
d t
L  I


Conservation of Angular Momentum: L i  L
n et ext


li

d L
d t
Angular Momentum of a Rigid Body:
Static equilibrium:
if a ll th e fo rc e s lie in x y p la n e
F
n et,x
 0;
F
n et, y
 0;

 0
net,z
s tre s s = m o d u lu s  s tra in
Elastic Moduli:
8.
Tension and Compression:
9.
Shearing:
 G
10. Hydraulic Stress:
 L
, G
L
p  B
11. Simple harmonic motion:
12. The Linear Oscillator:
13. Pendulums:
(is o la te d s y s te m )


F net  0 ;  net  0
7.
F
A
f
F
A
 E
 L
, E i s t h e Y o u n g 's m o d u l u s
L
is th e s h e a r m o d u lu s
 V
V
, B is th e b u lk m o d u lu s
x  x
 
m
c o s( t   ); v    x
k
, T
m
 2
m
s in ( t   ); a   
2
x
m
c o s( t   )
m
k
T
 2
I
, to rs io n p e n d u lu m
k
T
 2
L
, s im p le p e n d u lu m
g
T
 2
I
, p h y s ic a l p e n d u lu m
m g h
6
1.
Damped Harmonic Motion:
2.
Sinusoidal waves:
x (t) 
x
m
 b t
e
2 m
k
m
c o s ( ' t   ),  ' 
2


b 2
4 m
1
T
, v 
3.
Wave speed on stretched string:
4.
Average power transmitted by a sinusoidal wave on a stretched string:
Pavg 
5.
Interference of waves:
6.
Standing waves:
7.
Resonance:
8.
Sound waves:
f

y
v

B

Interference:
 L
 

2
 (2 m
Sound level in decibels:
12.
Standing wave patterns in pipes:
13.
f

v
v

Beats:

 1 )
1
 v
2
11.


f


k


1
 v
2
2
2
fo r m
f
2
m
s
2
m
 (1 0 d B ) lo g
, I 
I
, I
Io
 0 ,1 , 2 , 3 ..., d e s tr u c tiv e in te r f e r e n c e
Ps
4 r
o
2
 1 0
 1 2
W
/ m
2
n v
, n  1 , 3 , 5 , ..., f o r p ip e c lo s e d a t o n e e n d a n d o p e n e d a t th e o th e r
4 L
f1 
y
 0 ,1 , 2 , 3 ..., c o n s tr u c tiv e in te r f e r e n c e


m
1
1
 ] s in ( k x   t 
 )
2
2
n v
, n  1 , 2 , 3 , ..., f o r p ip e o p e n e d f r o m
2 L
b ea t
 b t
  f
T

f
e
s in k x ] c o s  t
 m (2 ) fo r m
Sound Intensity:

co s
m
2
10.
f
2
2
m
v
, f o r n  1 , 2 , 3 , ...
2 L
P
, I 
A
I 
,
1
k x
2
,

 L
m

, E (t) 


v 
y '( x , t )  [ 2 y
 n
v 
s in ( k x   t ), k 
m
y '( x , t )  [ 2 y
 
9.
y ( x , t) 
2
b o th e n d s
2
7
1.
The Doppler effect:
f '  f (1 
vR
),
vs
vR the speed of the receiver; vs the speed of the
sound;(vs=331m/s);
+ for receiver approaching stationary emitter,
- for receiver moving away from the stationary emitter;



1 
f'  f 
,
v
E
1

vs 

vE the speed of the emitter, vs the speed of the sound,
- for emitter approaching stationary receiver,
+ for emitter moving away from the stationary receiver;
f ' f
vs  vR
general Doppler Effect
vs  vE
8
9
2.
Your grandfather clock’s pendulum has a length of 0.9930 m. if the clock
loses half a minute per day, how should you adjust the length of the
pendulum?
For a simple pendulum T  2
L
g
Suppose clock's pendulum oscillates "n" times in a day.
 nT1  (24  3600  30)  86370s
after the adjustment of the pendulum's length
nT2  (24  3600)  86400 s
L2
g
T2


Take ratio
T1
L
2 1
g
2
L2 86400

L1 86370
864002  0.9930
 L2 
 0.9937
2
86370
 L2  L1  0.9937  0.9930  7  104 m
10
11
4.
12
5.
13
6.
14
Related documents