Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SENTRIFUGASI 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Sentrifugasi Proses pemisahan solid dari liquid dengan prinsip grafitasi. Densitas solid harus lebih besar dari densitas liquid Peran gaya sentrifugal: 1. Mendorong partikel kecil agar mengendap 2. Menahan brownian motion 3. Mencegah arah free convection fluida 4. Mengurangi penumpukan “cake” pada screen (untuk centrifugal filtration) 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 1 General principle 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 2 Klasifikasi centrifuge Labratory centrifuge Kapasitas Preparative centrifuge Sedimenting centrifuge Kegunaan Filtering centrifuge Ultracentrifugation 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Tubular bowl Basket Disk stack Scroll decanter Basket Pusher Baffle Inverting bag Cone screen 3 Klasifikasi centrifuge Labratory centrifuge Tubular bowl centrifuge 1000-15000rpm 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 4 Preparative centrifuge Tubular bowl centrifuge 500-2000 rpm Better performance than turbular flow 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 5 Klasifikasi centrifuge Sedimenting centrifuge Steve, 2007 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 6 Klasifikasi centrifuge Filtering centrifuge 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Steve, 2007 1 centrifugal filtration 2 centrifugal settling 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 8 3 Gas-solid cyclone separator 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 9 4 horizontal axis scroll decanter centrifuge 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 10 Pusher centrifuge Peeler centrifuge 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 11 Ultracentrifugation 1000-15000 rpm Digunakan untuk pemisahan atau analisa campuran makromolekul (AUC). Ex: protein 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Rpm tinggi menimbulkan panas sehingga memerlukan cooling 12 Applications of centrifuges in food processing 13 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Persamaan pada sentrifugasi 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 Persamaan pada centrifuge settling 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 20 Persamaan pada centrifuge settling • Settling: acceleration from gravity (Fg) • Centrifuge: – acceleration from centrifugal force (Fc) – circular motion and acceleration occurred from centrifugal force ac r 2 ac = acceleration from centrifugal force (m/s2) r = radial distance (m) ω = angular velocity (rad/s) Nur Istianah-KPP-Sentrifugasi-2014 20 Centrifugal force (Fc) Nur Istianah-KPP-Sentrifugasi-2014 21 • The centrifugal force, Fc acting on an object of mass m, rotating in a circular path of radius R, at an angular velocity of ω is : Fc mR 2 (1) and 2N N 60 30 (2) where N = rotational speed (rpm) ω= an angular velocity (rad s-1) Nur Istianah-KPP-Sentrifugasi-2014 22 Nur Istianah-KPP-Sentrifugasi-2014 23 g force (gravities or g’s) Nur Istianah-KPP-Sentrifugasi-2014 23 • The steady-state velocity of particles moving in a streamline flow under the action of an accelerating force g ( s l ) Ds2 from vt 18 r 2 ( s l ) Ds2 vt 18 Where vt=terminal velocity of particle; ρs and ρl = density of solid and liquid ; r = distance of the particle from center of rotation;µ = viscosity of liquid. Nur Istianah-KPP-Sentrifugasi-2014 23 Centrifugation time • Time taken by the particle to move though the liquid layer is called residence time (tr). dr Vt dt Nur Istianah-KPP-Sentrifugasi-2014 23 ( s )D r vt 18 2 2 s dr D r ( s ) dt 18 2 s 2 Nur Istianah-KPP-Sentrifugasi-2014 23 D ( s ) 1 dt r r dr 18 0 1 r2 2 s 2 t r2 D ( s ) ln tr r1 18 2 s 2 r2 18 ln r1 tr 2 2 Ds ( s ) Nur Istianah-KPP-Sentrifugasi-2014 23 Calculation of flow rate for continuous centrifuge • flow rate (Q) V Q tr V r2 18 ln r1 Ds2 2 ( s ) V Ds2 2 ( s ) (r22 r12 )b Ds2 2 ( s ) Q r2 r2 18 ln 18 ln r1 r1 Nur Istianah-KPP-Sentrifugasi-2014 23 • r1 = inside radius (m) • r2 = outside radius (m) • b = height of centrifuge(m) • µ = viscosity (Pa.s) • ω = an angular velocity (rad s-1) • ρs = density of solid (kg/m3) • ρ = density of liquid (kg/m3) • Ds= diameter of particle(m) • V(m3)=operating volume of the centrifuge Nur Istianah-KPP-Sentrifugasi-2014 23 Example 1 Find centrifugation time tr of a particle d=1mm. In a centrifuge Given N 995 RPM 8.110 4 Pa.s P 1100kg / m 3 Ri Ro f 1000kg / m 3 Ri 0.20m. Ro 0.25m. Nur Istianah-KPP-Sentrifugasi-2014 23 Find ω 2N 60 2 995 60 104.20rad / s Nur Istianah-KPP-Sentrifugasi-2014 23 Find time 18 ln( ro / ri ) tr 2 2 d p f 4 18 8.110 ln(0.25 / 0.20) tr 2 2 0.001 104.20 1100 1000 3 t r 3.25 10 sec tr of particle d=1mm. in centrifuge≥3.25x10-3sec Nur Istianah-KPP-Sentrifugasi-2014 23 Example 2 Beer with a specific gravity of 1.042 and a viscosity of 1.04x10-3 N s/m2 contains 1.5% solids which have a density of 1160kg/m3. It is clarified at a rate of 240 l/h in a bowl centrifuge which has and operating volume of 0.09 m3 and a speed of 10000 rev/min. The bowl has a diameter of 5.5 cm and is fitted with a 4 cm outlet. Calculate the effect on feed rate of an increase in bowl speed to 15000 rev/min and the minimum particle size that can be removed at the higher speed. Nur Istianah-KPP-Sentrifugasi-2014 23 • Solution Initial flow rate Q1 V (2N1 / 60) 2 D 2 p f 18 ln( ro / ri ) new flow rate Q2 V (2N 2 / 60) 2 D 2 p f 18 ln( ro / ri ) Nur Istianah-KPP-Sentrifugasi-2014 23 As all conditions except the bowl speed remain the same, Q2 (2N 2 / 60) 2 Q1 (2N1 / 60) 2 Q2 (2 3.142 15000 / 60) 2 (240 / 3600) (2 3.142 10000 / 60) 2 Therefore, Q2 = 0.15 l/s Nur Istianah-KPP-Sentrifugasi-2014 23 To find the minimum particle size Q2 [18 ln( ro / ri )] D (2N 2 / 60) 2 ( p f )V 2 0.15[18 1.40 10 3 ln(0.0275 / 0.02)] (2 3.142 15000 / 60) 2 (1160 1042)0.09 3 1.20 10 D 6.8m 7 2.62 10 Nur Istianah-KPP-Sentrifugasi-2014 23 Separation of liquids 1 # A and B are dense and light liquid, rA, rB =outlet radius rn= radius of neutral zone. 2 Ω = angular velocity, Q = volumetric flowrate, V = operating volume of the centrifuge, D = diameter of the particle, r2 = radius of light phase outlet, r1 = radius of dense phase outlet, N =speed of rotation 3 Fig 6.1. Separation of immiscible liquids # t (s)=residence time 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014 15 Example3 • A bowl centrifuge is used to break an oil-inwater emulsion. Determine the radius of the neutral zone in order to position the feed pipe correctly. (Assume that the density of the continuous phase is 1000 kg/m3 and the density of the oil is 870 kg/m3. the outlet radius from the centrifuge are 3 cm and 4.5 cm). Nur Istianah-KPP-Sentrifugasi-2014 23 • Solution 1000(0.045) 870(0.03) rn 1000 870 2.025 0.783 rn 130 rn 0.098m 2 2 2 Nur Istianah-KPP-Sentrifugasi-2014 23 THANKS FOR YOUR ATTENTION The best person is one give something useful always 07/10/2014 Nur Istianah-KPP-Sentrifugasi-2014