Download GCSE-Trigonometry3-4GraphsAndEquations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
GCSE Trigonometry Parts 3 and 4 –
Trigonometric Graphs and Equations
Dr J Frost ([email protected])
Objectives: (from the IGCSE FM specification)
Last modified: 28th December 2016
Sin Graph
What does it look like?
-360
-270
-180
-90
?
90
180
270
360
Sin Graph
What do the following graphs look like?
-360
-270
-180
-90
90
180
270
Suppose we know that sin(30) = 0.5. By thinking about symmetry in the graph,
how could we work out:
sin(150) = 0.5?
sin(-30) = -0.5?
sin(210) = -0.5
?
360
Cos Graph
What do the following graphs look like?
-360
-270
-180
-90
?
90
180
270
360
Cos Graph
What does it look like?
-360
-270
-180
-90
90
180
270
Suppose we know that cos(60) = 0.5. By thinking about symmetry in the graph,
how could we work out:
cos(120) = -0.5
?
cos(-60) = 0.5?
cos(240) = -0.5
?
360
Tan Graph
What does it look like?
-360
-270
-180
-90
?
90
180
270
360
Tan Graph
What does it look like?
-360
-270
-180
-90
90
180
270
Suppose we know that tan(30) = 1/√3. By thinking about symmetry in the
graph, how could we work out:
tan(-30) = -1/√3
?
tan(150) = -1/√3
?
360
Solving Trig Equations
Solve sin π‘₯ = 0.6 in the range 0 ≀ π‘₯ < 360
𝒙 = π¬π’π§βˆ’πŸ 𝟎. πŸ” =?πŸ‘πŸ”. πŸ–πŸ•°, πŸπŸ’πŸ‘.?πŸπŸ‘°
Angle Law #1:
𝐬𝐒𝐧 𝒙 = 𝐬𝐒𝐧(πŸπŸ–πŸŽ βˆ’ 𝒙)
0.6
-360
-270
-180
-90
?
πŸ‘πŸ”. πŸ–πŸ•°
90
180
270
360
Solving Trig Equations
Solve 3cos π‘₯ = 2 in the range 0 ≀ π‘₯ < 360
2
cos π‘₯ =?
3
𝟐
βˆ’πŸ
𝒙 = 𝒄𝒐𝒔
= ?πŸ’πŸ–. πŸπŸ—°, πŸ‘πŸπŸ.?πŸ–πŸ°
πŸ‘
Angle Law #2:
𝒄𝒐𝒔 𝒙 = 𝒄𝒐𝒔(πŸ‘πŸ”πŸŽ βˆ’ 𝒙)
𝟐
πŸ‘
-360
-270
-180
-90
πŸ’πŸ–. πŸπŸ—°
90
?
180
270
360
Solving Trig Equations
Solve sin π‘₯ = βˆ’0.3 in the range 0 ≀ π‘₯ < 360
𝒙 = π¬π’π§βˆ’πŸ βˆ’πŸŽ. πŸ‘ = βˆ’πŸπŸ•.
? πŸ’πŸ”°, πŸπŸ—πŸ•. πŸ’πŸ”°,?πŸ‘πŸ’πŸ. πŸ“πŸ’
Angle Law #3:
Sin and cos repeat every 360°
βˆ’πŸπŸ•. πŸ’πŸ”°
-360
-270
-180
-90
90
-0.3
?
180
?
270
360
Laws of Trigonometric Functions
!
sin π‘₯ = sin 180?βˆ’ π‘₯
cos π‘₯ = cos 360?βˆ’ π‘₯
?
sin and cos repeat every 360°
?
tan repeats every 180°
Solutions generally come in pairs (e.g. 30°
and 150° for sin) for each β€˜cycle’ of sin/cos.
We can therefore get the next pair of
solutions by going to the next cycle.
Test Your Understanding
Solve cos π‘₯ = 0.9 in the range 0 ≀ π‘₯ < 360
π‘₯ = cos βˆ’1 0.9 = πŸπŸ“. πŸ–πŸ’°
?
360 βˆ’ 25.84° = πŸ‘πŸ‘πŸ’. πŸπŸ”°
Solve tan π‘₯ = 1 in the range 0 ≀ π‘₯ < 360
π‘₯ = tanβˆ’1 1 = πŸ’πŸ“°
?
45° + 180° = πŸπŸπŸ“°
Set 4 Paper 2 Q14
sin πœƒ = βˆ’0.68 β†’ πœƒ = βˆ’42.84°
? = 𝟐𝟐𝟐. πŸ–πŸ’°
180 βˆ’ βˆ’42.84
βˆ’42.84 + 360 = πŸ‘πŸπŸ•. πŸπŸ”°
Exercise 1
1
Solve the following in the range 0 ≀ π‘₯ ≀ 360
a
sin π‘₯ = 0.5 β†’ 𝒙 = πŸ‘πŸŽ°,?πŸπŸ“πŸŽ°
3
b
cos π‘₯ =
β†’ 𝒙 = πŸ‘πŸŽ°, πŸ‘πŸ‘πŸŽ°
?
2
c tan π‘₯ = 3
?
β†’ 𝒙 = πŸ”πŸŽ°, πŸπŸ’πŸŽ°
β†’ 𝒙 = πŸ“. πŸ•πŸ’°, πŸπŸ•πŸ’.
d sin π‘₯ = 0.1
? πŸπŸ”°
e
4 cos π‘₯ = 3 β†’ πŸ’πŸ. πŸ’πŸ°,?πŸ‘πŸπŸ–. πŸ“πŸ—°
6 tan π‘₯ = 5 β†’ πŸ‘πŸ—. πŸ–πŸ°,?πŸπŸπŸ—. πŸ–πŸ°
f
sin π‘₯ = 0.4 β†’ πŸπŸ‘. πŸ“πŸ–°,?πŸπŸ“πŸ”. πŸ’πŸ°
g
2
Solve the following in the range 0 ≀ π‘₯ ≀ 360
a sin πœƒ = βˆ’0.5 β†’ 𝟐𝟏𝟎°, πŸ‘πŸ‘πŸŽ°
?
b cos πœƒ = βˆ’0.5 β†’ 𝟏𝟐𝟎°, πŸπŸ’πŸŽ°
?
c tan πœƒ = βˆ’1
β†’ πŸπŸ‘πŸ“°, πŸ‘πŸπŸ“°
?
d sin πœƒ = βˆ’0.4 β†’ πŸπŸŽπŸ‘. πŸ“πŸ–°,?πŸ‘πŸ‘πŸ”. πŸ’πŸ°
e cos πœƒ = βˆ’0.7 β†’ πŸπŸ‘πŸ’. πŸ’°, πŸπŸπŸ“. πŸ”°
?
f tan πœƒ = βˆ’0.2 β†’ πŸπŸ”πŸ–. πŸ”πŸ—°,?πŸ‘πŸ’πŸ–. πŸ”πŸ—°
Trigonometric Identities
1
Using basic trigonometry to find
these two missing sides…
sin?πœƒ

cos?
1
2
Then 𝒕𝒂𝒏 𝜽 =
π’”π’Šπ’ 𝜽
?
𝒄𝒐𝒔 𝜽
Pythagoras gives
you...
These two identities are all
you will need for IGCSE FM.
π’”π’Šπ’πŸ 𝜽 + π’„π’π’”πŸ 𝜽 = 𝟏
?
sin2 πœƒ is a shorthand for sin πœƒ 2 . It does NOT mean
the sin is being squared – this does not make sense
as sin is not a quantity that we can square!
Application #1: Solving Harder Trig Equations
Solve sin π‘₯ = 2 cos π‘₯ in the range 0 ≀ π‘₯ < 360°
The problem here is that we have two different trig functions. Is there
anything we could divide by to get just one trig function?
sin π‘₯ 2 cos π‘₯
=?
cos π‘₯
cos π‘₯
tan π‘₯? = 2
π‘₯ = 63.43°,
? 243.43°
Bro Tip: In general, when you have a
mixture of sin and cos, divide
everything by cos.
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
Test Your Understanding
Solve 2 s𝑖𝑛 π‘₯ = cos π‘₯ in the range 0 ≀ π‘₯ < 360°
2 tan π‘₯ = 1
1
tan π‘₯ = ?
2
π‘₯ = 26.57°, 206.57°
Solve cos π‘₯ = sin π‘₯ in the range 0 ≀ π‘₯ < 360°
1 = tan π‘₯
π‘₯ = 45°, 225°
?
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
Application #1: Solving Harder Trig Equations
June 2013 Paper 2 Q22
Solve tan2 πœƒ + 3 tan πœƒ
= 0 in the range 0 ≀ π‘₯ < 360°
This looks a bit like a quadratic. What would be our usual strategy to solve!
tan πœƒ tan πœƒ + ?3 = 0
?
tan πœƒ = 0 π‘œπ‘Ÿ
πœƒ = 0, 180,
?
tan πœƒ = βˆ’3
108.43°, 288.4°
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
sin π‘₯
A. tan π‘₯ = cos π‘₯
B. sin2 π‘₯ + cos2 π‘₯ = 1
More Examples
Solve 2sin2 πœƒ βˆ’ sin πœƒ = 0 in the range 0 ≀ π‘₯ < 360°
sin πœƒ 2 sin πœƒ βˆ’ 1 = 0
1
sin πœƒ = 0 π‘œπ‘Ÿ? sin πœƒ =
2
πœƒ = 0, 180°, 30°, 150°
2
1
4
Solve cos πœƒ = in the range 0 ≀ π‘₯ < 360°
1
1
cos πœƒ =
π‘œπ‘Ÿ cos πœƒ = βˆ’
2
2
?
πœƒ = 60°, 300°, 120°, 240°
Test Your Understanding
Solve cos 2 πœƒ + cos πœƒ = 0 in the range 0 ≀ π‘₯ < 360°
cos πœƒ cos πœƒ + 1 = 0
cos πœƒ = 0 π‘œπ‘Ÿ? cos πœƒ = βˆ’1
πœƒ = 90°, 270°, 180°
Expand and simplify (2𝑠 + 1)(𝑠 βˆ’ 1). Hence or otherwise, solve
2 sin2 πœƒ βˆ’ sin πœƒ βˆ’ 1 = 0 for 0° ≀ πœƒ < 360°
2 sin πœƒ + 1 sin πœƒ βˆ’ 1 = 0
1
sin πœƒ = βˆ’ π‘œπ‘Ÿ
? sin πœƒ = 1
2
πœƒ = 210°, 330°, 90°
Exercise 2
1 Solve the following in the range
0° ≀ π‘₯ < 360°
a sin πœƒ = 3 cos πœƒ
? πŸ“πŸ•°
β†’ 𝜽 = πŸ•πŸ. πŸ“πŸ•°, πŸπŸ“πŸ.
b 2 sin πœƒ = 3 cos πœƒ β†’ 𝜽 = πŸ“πŸ”. πŸ‘πŸ°, πŸπŸ‘πŸ”.
? πŸ‘πŸ°
2
a
b
c
Solve the following by first factorising. 0° ≀ π‘₯ < 360°
cos 2 πœƒ βˆ’ cos πœƒ = 0
β†’ 𝜽 = πŸ—πŸŽ, πŸπŸ•πŸŽ, 𝟎?
tan2 πœƒ βˆ’ 3 tan πœƒ = 0
β†’ 𝜽 = 𝟎, πŸπŸ–πŸŽ, πŸ•πŸ. ?
πŸ“πŸ•, πŸπŸ“πŸ. πŸ“πŸ•°
sin π‘₯ cos π‘₯ + sin π‘₯ = 0 β†’ 𝜽 = 𝟎°, πŸπŸ–πŸŽ° ?
3 Solve the following: 0° ≀ π‘₯ < 360°
3
β†’ 𝜽 = πŸ”πŸŽ°, 𝟏𝟐𝟎°,?πŸπŸ’πŸŽ°, πŸ‘πŸŽπŸŽ°
a sin2 πœƒ = 4
3
b cos 2 πœƒ =
β†’ 𝜽 = πŸ‘πŸŽ°, πŸπŸ“πŸŽ°, ?
𝟐𝟏𝟎°, πŸ‘πŸ‘πŸŽ°
4
β†’ 𝜽 = πŸ”πŸŽ°, 𝟏𝟐𝟎°, ?
πŸπŸ’πŸŽ°, πŸ‘πŸŽπŸŽ°
c tan2 πœƒ = 3
4
a
b
N
By factorising these β€˜quadratics’, solve in the range 0 ≀ π‘₯ < 360
3 cos 2 πœƒ + 2 cos πœƒ βˆ’ 1 = 0 β†’ 𝜽 = πŸ•πŸŽ. πŸ“πŸ‘°, πŸπŸ–πŸŽ°,
? πŸπŸ–πŸ—. πŸ’πŸ•°
6 sin2 πœƒ βˆ’ sin πœƒ βˆ’ 1 = 0
β†’ 𝜽 = πŸ‘πŸŽ°, πŸπŸ“πŸŽ°, πŸπŸ—πŸ—.
? πŸ’πŸ•°, πŸ‘πŸ’πŸŽ. πŸ“πŸ‘°
sin πœƒ cos πœƒ + sin πœƒ + cos πœƒ = βˆ’1 β†’ 𝐬𝐒𝐧 𝜽 + 𝟏 𝐜𝐨𝐬 𝜽 + 𝟏 ?
= 𝟎 β†’ 𝜽 = πŸπŸ–πŸŽ°, πŸπŸ•πŸŽ°
Review of what we’ve done so far
οƒΌ
οƒΌ
partly
οƒΌ
Application of identities #2: Proofs
Prove that 1 βˆ’ tan πœƒ sin πœƒ cos πœƒ ≑ cos 2 πœƒ
Recall that ≑ means
β€˜equivalent to’, and just
means the LHS is always
equal to the RHS for all
values of πœƒ.
sin πœƒ
𝐿𝐻𝑆 = 1 βˆ’
sin πœƒ cos πœƒ
cos πœƒ ?
sin2 πœƒ π‘π‘œπ‘ πœƒ
?
=1βˆ’
cos πœƒ
2
= 1 βˆ’ sin πœƒ ?
= cos 2 πœƒ = 𝑅𝐻𝑆
?
1.
2.
3.
4.
sin π‘₯ = sin 180 βˆ’ π‘₯
cos π‘₯ = cos 360 βˆ’ π‘₯
𝑠𝑖𝑛, π‘π‘œπ‘  repeat every 360
π‘‘π‘Žπ‘› repeats every 180
𝐬𝐒𝐧 𝒙
We want to use
these…
A. 𝐭𝐚𝐧 𝒙 = 𝐜𝐨𝐬 𝒙
B. 𝐬𝐒𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 = 𝟏
Another Example
June 2012 Paper 1 Q16
Prove that tan πœƒ +
𝐿𝐻𝑆 =
1
tan πœƒ
≑
1
sin πœƒ cos πœƒ
sin πœƒ cos πœƒ
+
cos πœƒ ?
sin πœƒ
sin2 πœƒ
cos 2 πœƒ
=
+
sin πœƒ cos πœƒ ?sin πœƒ cos πœƒ
sin2 πœƒ + cos 2 πœƒ
=
?πœƒ
sin πœƒ cos
1
=
= 𝑅𝐻𝑆
sin πœƒ cos πœƒ?
Bro Tip: Whenever you
have a fraction in a proof
question, always add the
fractions.
Test Your Understanding
Prove that
tan π‘₯ cos π‘₯
1βˆ’cos2 π‘₯
≑1
sin π‘₯
cos π‘₯ sin π‘₯
cos
π‘₯
=
=?
=1
2
sin
π‘₯
sin π‘₯
AQA Worksheet
Prove that tan2 πœƒ ≑
1
cos2 πœƒ
βˆ’1
tan2 πœƒ
sin2 πœƒ
=
cos 2 πœƒ
1 βˆ’ cos 2 πœƒ
=?
cos 2 πœƒ
1
cos 2 πœƒ
=
βˆ’
cos 2 πœƒ cos 2 πœƒ
Exercise 3
1 Simplify 3 sin π‘₯ sin π‘₯ + 2 βˆ’ 3 2 sin π‘₯ βˆ’ cos 2 π‘₯
= πŸ‘ 𝐬𝐒𝐧𝟐 𝒙 + πŸ” 𝐬𝐒𝐧 𝒙 βˆ’ πŸ” 𝐬𝐒𝐧 𝒙 + πŸ‘ 𝐜𝐨𝐬 𝟐 𝒙
?πŸ‘
= πŸ‘ 𝐬𝐒𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝟐 𝒙 =
2 Write out the following in terms of sin π‘₯:
2
2
a) cos π‘₯ tan π‘₯
b) tan π‘₯ cos 3 π‘₯
c)
cos π‘₯ 2 cos π‘₯
𝐬𝐒𝐧𝟐 𝒙
= 𝒄𝒐𝒔 𝒙 𝐜𝐨𝐬𝟐 𝒙 = 𝐬𝐒𝐧𝟐 𝒙
𝐬𝐒𝐧 𝒙
= 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 πŸ‘ 𝒙 = 𝐬𝐒𝐧 𝒙 𝐜𝐨𝐬 𝟐 𝒙 =
βˆ’ 3 tan π‘₯ = 𝟐 𝐜𝐨𝐬 𝟐 𝒙 βˆ’ πŸ‘ 𝐬𝐒𝐧 𝒙
𝟐
?
?
3 Prove the following:
a. tan π‘₯ 1 βˆ’ sin2 π‘₯ ≑ sin π‘₯
b.
c.
d.
e.
f.
1βˆ’cos2 π‘₯
1βˆ’sin2 π‘₯
≑ tan2 π‘₯
1 + sin π‘₯ 1 βˆ’ sin π‘₯ ≑ cos 2 π‘₯
2 sin π‘₯ cos π‘₯
2π‘₯
≑
2
βˆ’
2
sin
tan π‘₯
1
cos πœƒ
βˆ’ cos πœƒ ≑ sin πœƒ tan πœƒ
2 sin πœƒ βˆ’ cos πœƒ 2 + sin πœƒ + 2 cos πœƒ
2
≑5
𝐬𝐒𝐧 𝒙 𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙
=𝟐?
𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝒙 βˆ’ πŸ‘ 𝐬𝐒𝐧 𝒙
Using triangles to change between sin/cos/tan
3
Given that sin πœƒ = and that πœƒ is
5
acute, find the exact value of:
πŸ’
a) cos πœƒ = ?
b) tan πœƒ =
πŸ“
πŸ‘
πŸ’
?
?5
?3
Represent as
a triangle
πœƒ
4
Test Your Understanding
1
5
13
Given that cos πœƒ = and that
πœƒ is acute, find the value of:
𝟏𝟐
a) sin πœƒ = ?
b) tan πœƒ
πŸπŸ‘
𝟏𝟐
= ?
πŸ“
2
5
Given that tan πœƒ = and that
2
πœƒ is acute, find the value of:
a) sin πœƒ =
b) cos πœƒ =
πŸ“
?
πŸ‘
𝟐
?
πŸ‘
Related documents