Download Fundamentals of Electrical Engineering 2 Grundlagen der

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fundamentals of Electrical Engineering
Fundamentals of Electrical Engineering 2
Grundlagen der Elektrotechnik 2
Chapter: Magnetically Coupled Circuits /
Magnetisch verkoppelte Kreise
Michael E. Auer
Source of figures:
Alexander/Sadiku: Fundamentals of Electric Circuits,
McGraw-Hill
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Course Content
Sinusoids and Phasors / Harmonische Funktionen und Zeiger
Sinusoidal Steady State Analysis /
Netzwerkanalyse bei harmonischer Erregung
Frequency Response Analysis / Frequenzgang Analyse
AC Power / Leistung in Wechselstromkreisen
Magnetically Coupled Circuits / Magnetisch verkoppelte Kreise
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Chapter Content
Mutual Inductance / Gegeninduktion
Transformers / Transformatoren
Applications / Anwendungen
Summary / Zusammenfassung
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Chapter Content
Mutual Inductance / Gegeninduktion
Transformers / Transformatoren
Applications / Anwendungen
Summary / Zusammenfassung
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Faraday‘s Law
dΦ
v=N
dt
dΦ di dΨ di
v=N
⋅ =
⋅
di dt di dt
di
v = L⋅
L – Self-inductance
dt
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (1)
•
It is the ability of one inductor to induce a voltage across a
neighboring inductor, measured in henrys (H).
di1
v2 = M 21
dt
di2
v1 = M 12
dt
The open-circuit mutual
voltage across coil 2
Michael E.Auer
In most cases:
M 12 = M 21
The open-circuit mutual
voltage across coil 1
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (2)
•
If a current enters the dotted terminal of one coil, the
reference polarity of the mutual voltage in the second
coil is positive at the dotted terminal of the second
coil.
Right-Hand-Rule
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (3)
•
The coupling coefficient, k, is a measure of the magnetic coupling
between two coils; 0 ≤ k ≤ 1.
M = k L1 L2
Michael E.Auer
0≤k≤1
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (4)
Time-domain Analysis
Transformation to the frequency-domain
di1
di2
+M
v1 = i1 ⋅ R1 + L1
dt
dt
V1 = ( R1 + jωL1 ) ⋅ I1 + jωM ⋅ I 2
V2 = jωM ⋅ I1 + ( R2 + jωL2 ) ⋅ I 2
di
di
v2 = i2 ⋅ R2 + L2 2 + M 1
dt
dt
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (5)
V = (Z1 + jωL1 ) ⋅ I1 − jωM ⋅ I 2
0 = − jωM ⋅ I1 + (Z L + jωL2 ) ⋅ I 2
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Mutual Inductance (6)
L = L1 + L2 + 2 M
L = L1 + L2 − 2 M
(series - opposing connection)
(series - aiding connection)
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Chapter Content
Mutual Inductance / Gegeninduktion
Transformers / Transformatoren
Applications / Anwendungen
Summary / Zusammenfassung
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Ideal Transformer
•
An ideal transformer is a unity-coupled, lossless transformer.
V2 N 2
=
=n
V1 N1
Z in =
Michael E.Auer
19.03.2010
I 2 N1 1
=
=
I1 N 2 n
ZL
n2
GET25
Fundamentals of Electrical Engineering
Linear Real Transformer (1)
•
It is generally a four-terminal
device comprising two (or
more) magnetically coupled
coils
From
V = (Z1 + jωL1 ) ⋅ I1 − jωM ⋅ I 2
0 = − jωM ⋅ I1 + ( R2 + jωL2 + Z L ) ⋅ I 2
we obtain
V
Z in = = R1 + jωL1 + Z R
I1
Michael E.Auer
ω 2M 2
with Z R =
R2 + jωL2 + Z L
19.03.2010
Reflected impedance
GET25
Fundamentals of Electrical Engineering
Linear Real Transformer (2)
Example
In the circuit below, calculate the input impedance and
current I1. Take Z1=60-j100Ω, Z2=30+j40Ω, and
ZL=80+j60Ω.
Ans:
Michael E.Auer
Z in = 100.14∠ − 53.1°Ω; I1 = 0.5∠113.1°A
19.03.2010
GET25
Fundamentals of Electrical Engineering
Chapter Content
Mutual Inductance / Gegeninduktion
Transformers / Transformatoren
Applications / Anwendungen
Summary / Zusammenfassung
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Applications (1)
•
Transformer as an Isolation Device to isolate ac supply from a
rectifier
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Applications (2)
•
Transformer as an Isolation Device to isolate dc between two
amplifier stages.
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Applications (3)
•
Transformer as a Matching Device
Using an ideal transformer to match the
speaker to the amplifier
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Applications (4)
Example
An ideal transformer is rated at 2400/120V, 9.6 kVA, and has
50 turns on the secondary side.
Calculate:
(a) the turns ratio,
(b) the number of turns on the primary side, and
(c) the current ratings for the primary and secondary windings.
Ans:
(a)
This is a step-down transformer, n = 0.05
(b)
N1 = 1000 turns
(c)
I1 = 4A and I2 = 80A
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Applications (5)
Example
Calculate the turns ratio of an ideal transformer required to match a
100Ω load to a source with internal impedance of 2.5kΩ. Find the
load voltage when the source voltage is 30V.
Ans: n = 0.2; VL = 3V
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Chapter Content
Mutual Inductance / Gegeninduktion
Transformers / Transformatoren
Applications / Anwendungen
Summary / Zusammenfassung
Michael E.Auer
19.03.2010
GET25
Fundamentals of Electrical Engineering
Summary
•
•
•
•
Michael E.Auer
Two coils are said to be mutually coupled if the magnetic flux Φ emanating from one passes
through the other.
The voltage induced in a coupled coil consists of self-induced voltage and mutual voltage.
A transformer is a four-terminal device containing two or more magnetically coupled coils. It
is used in changing the current, voltage, or impedance level in a circuit.
An ideal transformer is a lossless transformer, where input power and output power are
equal.
19.03.2010
GET25