Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Optical Properties of Materials Index of refraction 0 0 sin 0 n1 sin 1 n0 n c v … reflection … refraction (Snell’s law) … index of refraction sin 0 v1 sin 1 v0 Absorption 1 Maxwell’s Equations B E rot E r t D div D r Materials equations j E D εE ε 0 ε r E B μH μ0 μ r H ¶ ¶D ´ H = rot H = +j ¶r ¶t ¶ × B = div B = 0 ¶r 𝐸 … electric field 𝐻 … magnetic field 𝐷 … electric displacement field 𝐵 … magnetic induction 𝑗 … current density 𝜌 … electric charge density 𝜎 … electrical conductivity 𝜖 … permittivity 𝜇 … permeability 2 Maxwell’s Equations H rot E 0 μr t div D 0 εr div E 0 div E 0 … no free charge E rot H 0 εr E t div H 0 H rotrot E 0 μr rot t 2 H E E rot 0 εr 2 t t t 2E rotrot E graddiv E 2 r 0 2 2 E E E … wave equation 2 rotrot E μ0 μr ε0 εr 2 σ r t t 3 The Wave Equation 2 E E E 2 E μ0 μr ε0 εr 2 σ r t t E E0 exp i k r t 2 2 k E 0 μ r ε 0 ε r ω iω σ E 2 n2 2 k 2 ω iμ0 μr ωσ c ω2 2 μσ 2 k 2 n i r c ε0 ω 2 μσ k 2 k02 n 2 i r ε0 ω E 2 k E 2 r 2 c 1 0 0 c2 n 2 ε r μr v 2 2 2 2 k0 2 c 2 E iE t 2 E 2 E t 2 k 2 ~2 ~ ~ σ μr 1 2 n ε ε ε i k0 ε0 ω 4 Refraction and Absorption 0 n~ n i ~ i 2 n~ 2 n i n 2 2i 2 n~ 2 ~ 1 i 2 0 1 n 2 2 ; 2 2n 0 n 2 2in 2 1 i k … wave vector … angular frequency c … velocity of light n … index of refraction … electrical conductivity Complex permittivity: permittivity and losses Complex index of refraction: refraction and absorption 5 Amplitude and Intensity of the Propagating Wave E E0 exp i t k r k k0 n i E E0 exp i t k0 r n i E E0 exp i t nk0 r exp k0 r propagating wave I E E E absorption 2 I E0 2 exp i t nk0 r exp i t nk0 r exp 2k0 r 6 Relationship between Dielectric and Optical Constants 1 n 2 2 2 2n 0 2n 0 4n 0 2 n~ 2 n i n 2 2 2in n~ 2 ~ 1 i 1 i 2 0 2 1 1 12 12 22 1 n 2 12 2 0 2 1 1 12 12 22 1 2 12 2 0 7 * dielectric constant = permittivity Insulator 0 4n 0 2n 0 0; 2 0 … non-conducting material n2 n … the index of refraction is a real quantity … no absorption, no losses 8 Penetration Depth E E0 expi t k0nz exp k0 z propagating wave absorption I E E E 2 I E0 expi t k0nz exp i t k0nz exp 2k0 z 2 2 I I 0 exp 2k0 z I 0 exp z c 1 ze : I I 0 e 2 1 I I 0 exp z I0 c e 2 c c ze 1 ze c 2 4 4 40 n cn 0 ze … dependent on frequency (wavelength) and absorption 9 Penetration Depth and Absorption (Examples) 𝑊 𝑧e 𝑘𝜅 * absorption = damping 10 Reflection and Transmission E E0 exp i t k r 1 𝜃i 2 2 E E0 exp i t s r s r E E0 exp i t v 𝜃r 𝜃t Same amplitude and phase of wave at the point “0” s (i) s (r) s (t) x x x v1 v1 v2 s x sin θ sin θi sin θr sin θt v1 v1 v1 Reflection: Transmission: (Snell’s law) sin θi sin θr sin θi v1 ε μ n 2 2 2 n12 sin θt v2 ε1 μ1 n1 11 Electric and Magnetic Field H sE The vectors of the electric and magnetic fields are perpendicular to the propagation direction of the wave. EH s E 𝑬 𝐼 𝒔 𝜃i 𝜃r 𝑅 𝑇 𝑯 The original wave: E x(i ) A|| cos i e i i E y(i ) A e i i H x(i ) A cos i 1 e i i E z(i ) A|| sin i e i i H y(i ) A|| 1 e i i s (i ) r t x sin i z cos i i t v1 v1 H z(i ) A sin i 1 e i i 12 Electric and Magnetic Field The transmitted wave: E x(t) T|| cos θt e iτ t iτ t E (t) T e y E z(t) T|| sin θt e iτ t iτ t H x(t) T cos θt ε2 e iτ t H (t) y T|| ε 2 e s (t) r x sin θt z cos θt ω t τ t ω t v2 v2 H z(t) T sin θt ε2 e iτ t The reflected wave: E x( r ) R|| cos r e i r E y( r ) R e i r E z( r ) R|| sin r e i r H x( r ) R cos r 1 e i r H y( r ) R|| 1 e i r s ( r ) r t x sin r z cos r r t v1 v1 H z( r ) R sin r 1 e i r 13 Fresnel Equations … are obtained from the boundary conditions: Tangential components of 𝐸 and 𝐻 have to be continuous at the interface (surface). Ex( i ) Ex( r ) Ex( t ) H x( i ) H x( r ) H x( t ) Ey( i ) Ey( r ) Ey( t ) H y( i ) H y( r ) H y( t ) A R cos || || i T|| cos t A R T A R 1 cosi T 2 cos t 1 A|| R|| 2 T 14 Fresnel Coefficients T|| 2n1 cos i A|| n2 cos i n1 cos t t|| 2n1 cos i n2 cos i n1 cos t T 2n1 cos i A n1 cos i n2 cos t t 2n1 cos i n1 cos i n2 cos t R|| n2 cos i n1 cos t A|| n2 cos i n1 cos t r|| n2 cos i n1 cos t n2 cos i n1 cos t r n1 cos i n2 cos t n1 cos i n2 cos t Snell n cos i n2 cos t R 1 A n1 cos i n2 cos t n1 sin i n2 sin t cos t t|| 2n1 cos i 1 n22 n12 sin 2 i n2 n2 cos i n1 n22 n12 sin 2 i n t 2 n2 cos i n1 n22 n12 sin 2 i n r|| 2 n2 cos i n1 n2 n22 n12 sin 2 i r 2n1 cos i n1 cos i n22 n12 sin 2 i n1 cos i n22 n12 sin 2 i n1 cos i n22 n12 sin 2 i 15 Index of Refraction (Experimental Examples) 16 Materials with different refractive indices are very important for complex optical systems 17 Transmission and Reflection I E E E R Ir I0 r T It I0 t Vacuum Glass: n=1.5 2 2 2 R || 0 Brewster angle – complete polarization of reflected electromagnetic wave (polarization of light) R P 1 2 R || R R || R R || R Vacuum Glass (n=1,5) 18 Transmission and Reflection Vacuum Germanium: n=5,3 Vacuum Germanium (n=5,3) 19 Optical Reflection Glass (n=1,5) Vacuum Total internal reflection Glass (n=1,5) Vacuum 20 Total Internal Reflection n1 n2 n1 sin i n2 sin t n1 sin i sin t 1 n2 n1 sin c sin t 1 n2 c arcsin n2 c n2 n1 n1 Glass (n = 1,5): c = 41,8° Water (n = 2): c = 30° 21 Transmission and Reflection with Complex Index of Refraction 22 Transmission and Reflection with an Incident Angle of 0° t|| 2n1 cos i n2 cos i n1 n22 n12 sin 2 i n t 2 n2 cos i n1 n22 n12 sin 2 i n r|| 2 n2 cos i n1 n2 n22 n12 sin 2 i r 2n1 cos i n1 cos i n22 n12 sin 2 i n1 cos i n22 n12 sin 2 i n1 cos i n22 n12 sin 2 i i 0 cos i 1 sin i 0 2n1 n2 n1 n n r|| 2 1 n2 n1 t|| n n R 1 2 n1 n2 2 2n1 n1 n2 n n r 1 2 n1 n2 t t|| t r|| r n 1 Interface material - vacuum: R n 1 2 23 Table 11.2 Refractive index 𝑛 and absorption index 𝜅 of some materials with 𝜆 = 589 nm 4n 𝜅… absorption index 𝛼… absorption coefficient 𝑛… index of refraction … wavelength 24 Transmission and Reflection with Complex Index of Refraction Vacuum Copper (n=0.14-3.35i) Copper n = 0.14 k = 3.35 R = 95.6 % 25 Transmission and Reflection with Complex Index of Refraction Vacuum Sodium (n=0.048-1.86i) Sodium n = 0.048 k = 1.86 R = 95.8 % 26 Transmission and Reflection with Complex Index of Refraction Vacuum Gallium (n=3.69-5.43i) Gallium n = 3.69 k = 5.43 R = 71.3 % 27 Transmission and Reflection with Complex Index of Refraction Vacuum Cobalt (n=2.0-4.0i) Cobalt n = 2.0 k = 4.0 R = 68.0 % 28 29 Reflection with Complex Index of Refraction n 1 n i 1 n i 1 n 12 2 R n i 1 n i 1 n 12 2 n 1 2 Influence of absorption (weakening, damping) on the reflection 30 Reflection with Complex Index of Refraction Total external reflection vanishes 31 Reflectivity as function of Refractive Index and Absorption Reflectivity increases with increasing index of refraction and an increasing absorption index Fig. 11.2 Reflectivity as function of absorption and refractive index 32 Refractive Index as function of Wavelength Material (Sphalerite) Color of Materials (Rutile) Fig. 11.5 Refractive index as function of absorption index and absorption coefficient as function of wavelength for Si (a), KCl (b) and Cu (c). 33 Reflection and Transmission of a Thin Film Fresnel coefficients at the interfaces: t t12t23ei 1 r12 r23e 2i T r r12 r23e 2i 1 r12 r23e 2i n3 cos 3 2 t n1 cos 1 Phase shift: k nk0t cos R r 2 t12 2n1 cos 1 n1 cos 1 n2 cos 2 r12 n1 cos 1 n2 cos 2 n1 cos 1 n2 cos 2 t23 2n2 cos 2 n2 cos 2 n3 cos 3 r23 n2 cos 2 n3 cos 3 n2 cos 2 n3 cos 3 2 nt cos 34 Reflection and Transmission of a Thin Film Intensity (%) Vacuum Glass (n = 1.5, t = 6 μm) Vacuum, λ = 600 nm Constant wavelength (monochromatic radiation) Reflection Thickness of the film is ten times of the wavelength Angle of incidence (degree) 35 Reflection and Transmission of a Thin Film Intensity (%) Vacuum Glass (n = 1.5, t = 1.2 μm) Vacuum, λ = 600 nm Constant wavelength (monochromatic radiation) Reflection Thickness of the film is two times of the wavelength Angle of incidence (degree) 36 Reflection and Transmission of a Thin Film Vacuum Glass (n = 1.5, t = 24 μm) Vacuum, λ = 600 nm Intensity (%) Constant wavelength (monochromatic radiation) Reflection Thickness of the film is 40 times of the wavelength Angle of incidence (degree) 37 Reflection and Transmission of a Thin Film Vacuum Glass (n = 1.5, t = 1.2 μm) Vacuum, λ = 300-600 nm Different wavelengths (polychromatic radiation) Intensity (%) Thickness of film is 1.2 m Different “Colors” are reflected and transmitted differently. Angle of incidence (degree) 38