Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Stata 4, Survival Hein Stigum Presentation, data and programs at: http://folk.uio.no/heins/ Apr-17 H.S. 1 Agenda • Kaplan-Meier plots • Cox regression • Example – Age at first intercourse Apr-17 H.S. 2 Survival data Outcome: Status No debut Debut 0 1 Time age debut age Cencored Event • Unajusted analysis – Kaplan-Meier • Regression method – Cox-regression Apr-17 H.S. 3 Survival data setup • Status and time generate status=!missing(DebutAge) generate time=DebutAge replace time=Age if status==0 generate time2=time+uniform() avoid ties • Set and describe stset time, failure(status==1) stdes Apr-17 H.S. Set data Describe 4 Setting the timescale Time = time since diagnosis in years: stset dateexit, failure(dead==1) origin(datediag) scale(365.25) Time = age in years: stset dateexit, failure(dead==1) origin(datebth) enter(datediag) scale(365.25) Apr-17 H.S. 5 Mathematical functions • Standard distribution functions Time to event Density Cumulative density T f(t) F(t) • Survival functions Survival : S (t ) P(T t ) Hazard : h (t ) 1 dt t P(t dt T t | T t ) Cum. hazard : H (t ) h( s )ds 0 Failure : Apr-17 1 S (t ) F (t ) H.S. 6 Some relationships S (t ) e H (t ) F (t ) 1 e f(t) h(t) e H (t ) H (t ) if small H (t ) d h(t ) ln( S (t )) dt Apr-17 H.S. 7 Kaplan-Meier • Survival function S (t ) (1 ), f j failures , rj at risk t j t fj rj • Syntax sts graph, by(sex) sts test sex stci, p(50) by(sex) sts list, at(5 10 30) Apr-17 KM survival plot log-rank test time to 50% failure survival at time 5,… H.S. 8 Kaplan-Meier, all sts graph, fail gwood tmin(8) tmax(30) noorigin Age at 50% failure: stci, p(50) 18.4 (18.1,18.8) 0 .25 .5 .75 1 Kaplan-Meier failure estimate 10 Apr-17 15 20 analysis time 25 30 H.S. 9 Kaplan-Meier, by sex sts graph, fail by(gender) tmin(8) tmax(30) noorigin Age at 50% failure: : stci, p(50) by (gender) Males: 18.6 (18.3,19.0) Females: 18.1(17.8,18.9) 1.00 Kaplan-Meier failure estimates, by gender 0.50 0.75 Males Females 0.00 0.25 Log-rank test: sts test gender p-value=0.3 10 Apr-17 15 20 Age 25 30 H.S. 10 Hazards sts graph, hazard by(gender) width(2) 0 .1 .2 .3 .4 Smoothed hazard estimates, by gender 10 Apr-17 15 20 analysis time H.S. 25 30 11 Cox regression • Model hx (t ) h0 (t ) exp( b1 x1 b2 x2 ...) hazard baseline RR • Syntax – stcox x1 x2 • Proportional hazard test – stcox x1 x2, schoenfeld(sc*) scaledsch(ssc*) – estat phtest, detail – estat phtest, plot(x1) Apr-17 H.S. 12 Full model stcox gender cohab partfrq Apr-17 H.S. 13 Proportion hazard test Save residuals: stcox gender cohab partfrq, schoenfeld(sc*) scaledsch(ssc*) Test: estat phtest, detail Apr-17 H.S. 14 Smoothed Schoenfeld residuals estat phtest, plot(cohab) -5 0 5 Test of PH Assumption 0 10 20 Time 30 40 bandwidth = .8 Apr-17 H.S. 15 Baseline hazard stcox gender cohab partfrq, basesurv(bsurv) basehc(bhaz) stcurve, hazard at(gender=1 cohab=1 partfrq=0) range(8 30) width(1) 0 .1 .2 .3 Cox proportional hazards regression 10 Apr-17 15 20 analysis time H.S. 25 30 16 Predicted survival stcurve, survival at1(gender=1 cohab=1 partfrq=0) at2(gender=2 cohab=1 partfrq=0) .6 .4 0 .2 Survival .8 1 Cox proportional hazards regression 10 Apr-17 15 20 analysis time H.S. 25 30 17 If proptional hazard fails • Stratified Cox regression • Separate analysis on time intervals • Time dependent covariats • Additive model Apr-17 H.S. 18 Some Cox options stcox drug age, strata(sex) Stratified stcox drug age, shared(family) Frailty stcox drug age, tvc(varlist) Apr-17 H.S. Timevar cov 19