Download Stata 4, Survival

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Stata 4, Survival
Hein Stigum
Presentation, data and programs at:
http://folk.uio.no/heins/
Apr-17
H.S.
1
Agenda
• Kaplan-Meier plots
• Cox regression
• Example
– Age at first intercourse
Apr-17
H.S.
2
Survival data
Outcome:
Status
No debut
Debut
0
1
Time
age
debut age
Cencored
Event
• Unajusted analysis
– Kaplan-Meier
• Regression method
– Cox-regression
Apr-17
H.S.
3
Survival data setup
• Status and time
generate status=!missing(DebutAge)
generate time=DebutAge
replace time=Age if status==0
generate time2=time+uniform()
avoid ties
• Set and describe
stset time, failure(status==1)
stdes
Apr-17
H.S.
Set data
Describe
4
Setting the timescale
Time = time since diagnosis in years:
stset dateexit, failure(dead==1) origin(datediag) scale(365.25)
Time = age in years:
stset dateexit, failure(dead==1) origin(datebth) enter(datediag) scale(365.25)
Apr-17
H.S.
5
Mathematical functions
• Standard distribution functions
Time to event
Density
Cumulative density
T
f(t)
F(t)
• Survival functions
Survival :
S (t )  P(T  t )
Hazard :
h (t ) 
1
dt
t
P(t  dt  T  t | T  t )
Cum. hazard : H (t )   h( s )ds
0
Failure :
Apr-17
1  S (t )  F (t )
H.S.
6
Some relationships
S (t )  e
 H (t )
F (t )  1  e
f(t)  h(t) e
H (t )
 H (t ) if small
H (t )
d
h(t )   ln( S (t ))
dt
Apr-17
H.S.
7
Kaplan-Meier
• Survival function
S (t )   (1  ), f j  failures , rj  at risk
t j t
fj
rj
• Syntax
sts graph, by(sex)
sts test sex
stci, p(50) by(sex)
sts list, at(5 10 30)
Apr-17
KM survival plot
log-rank test
time to 50% failure
survival at time 5,…
H.S.
8
Kaplan-Meier, all
sts graph, fail gwood tmin(8) tmax(30) noorigin
Age at 50% failure:
stci, p(50)
18.4 (18.1,18.8)
0
.25
.5
.75
1
Kaplan-Meier failure estimate
10
Apr-17
15
20
analysis time
25
30
H.S.
9
Kaplan-Meier, by sex
sts graph, fail by(gender) tmin(8) tmax(30) noorigin
Age at 50% failure: :
stci, p(50) by (gender)
Males: 18.6 (18.3,19.0)
Females: 18.1(17.8,18.9)
1.00
Kaplan-Meier failure estimates, by gender
0.50
0.75
Males
Females
0.00
0.25
Log-rank test:
sts test gender
p-value=0.3
10
Apr-17
15
20
Age
25
30
H.S.
10
Hazards
sts graph, hazard by(gender) width(2)
0
.1
.2
.3
.4
Smoothed hazard estimates, by gender
10
Apr-17
15
20
analysis time
H.S.
25
30
11
Cox regression
• Model
hx (t )  h0 (t )  exp( b1 x1  b2 x2  ...)
hazard
baseline
RR
• Syntax
– stcox x1 x2
• Proportional hazard test
– stcox x1 x2, schoenfeld(sc*) scaledsch(ssc*)
– estat phtest, detail
– estat phtest, plot(x1)
Apr-17
H.S.
12
Full model
stcox gender cohab partfrq
Apr-17
H.S.
13
Proportion hazard test
Save residuals:
stcox gender cohab partfrq, schoenfeld(sc*) scaledsch(ssc*)
Test:
estat phtest, detail
Apr-17
H.S.
14
Smoothed Schoenfeld residuals
estat phtest, plot(cohab)
-5
0
5
Test of PH Assumption
0
10
20
Time
30
40
bandwidth = .8
Apr-17
H.S.
15
Baseline hazard
stcox gender cohab partfrq, basesurv(bsurv) basehc(bhaz)
stcurve, hazard at(gender=1 cohab=1 partfrq=0) range(8 30) width(1)
0
.1
.2
.3
Cox proportional hazards regression
10
Apr-17
15
20
analysis time
H.S.
25
30
16
Predicted survival
stcurve, survival
at1(gender=1 cohab=1 partfrq=0)
at2(gender=2 cohab=1 partfrq=0)
.6
.4
0
.2
Survival
.8
1
Cox proportional hazards regression
10
Apr-17
15
20
analysis time
H.S.
25
30
17
If proptional hazard fails
• Stratified Cox regression
• Separate analysis on time intervals
• Time dependent covariats
• Additive model
Apr-17
H.S.
18
Some Cox options
stcox drug age, strata(sex)
Stratified
stcox drug age, shared(family) Frailty
stcox drug age, tvc(varlist)
Apr-17
H.S.
Timevar cov
19
Related documents