Download Scaling - MyCourses

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Scaling
[email protected]
Contents
Wafer size scaling
Chip size scaling
Wafer thickness scaling
Projection lithography
Etch scaling (from wet to dry)
Selectivity scaling (CMOS gate)
Gate oxide scaling
Junction depth scaling
Thermal budget scaling (RTA)
Film thickness scaling (MLM, constant AR
Fab size scaling
Fab cost scalingLinewidth scaling
Wafer size scaling
525
µm
625
µm
725
µm
775 µm
?? 925 µm
Wafer thickness scaling
Wafer size and demand
Doering, R. & Y. Nishi: Limits of integrated circuit manufacturing, Proc. IEEE Vol. 89 (2001) p. 375
New prediction
https://www.extremetech.com/extreme/163372-atom-everywhere-intelbreaks-ground-on-first-450mm-fab
Useful chips & edge exclusion
Chip scaling and wafer scaling
Chip size vs. Yield
Good
Money
chips
USD
255
1020
98
1176
32
1696
18
1314
10
1490
6
1632
4
1668
EE141 © Digital Integrated Circuits 2nd Introduction 1 Digital Integrated Circuits A
Design Perspective Introduction Jan M. Rabaey Anantha Chandrakasan.
Optical projection lithography
Sources of radiation
(UV 365 nm-436 nm,
DUV 193 nm-248 nm,
EUV, X-rays, electrons, ions)
Optical system I
(lenses, mirrors)
Mask (pattern)
Optical system II
(lenses, mirrors)
Numerical aperture NA=sin 
Imaging medium (resist)
Wafer (with patterns)
Wafer stage
(alignment mechanism)

Reduction factor, often 5X
Mask 1 µm
minimum linewidth
5X optical
reduction 
0.2 µm on wafer
Projection litho performance
k1
resolution 
NA
k2  

DOF 


2
2
NA
2  NA
Table 10.1: Linewidth scaling of CMOS
Wavelength
Aperture
k factor
Linewidth
DoF
=436 nm
=365 nm
=248 nm
=248 nm
NA=0.38
NA=0.48
NA=0.60
NA=0.65
k1=0.8
k1=0.6
k1=0.6
k1=0.5
1 µm
0.5 µm
0.25 µm
0.18 µm
1.5µm
0.8 µm
0.35 µm
0.30 µm
Because depth of focus (DoF) gets smaller, CMP
planarization becomes more important all the time.
Projection lithography scaling
Lin, MEMS2010
Photomask cost scaling
Min LW
Cost
3 µm
1 µm
1 µm
300 euros
500 euros
1000 euros, quality checked
Mask LW
Wafer LW
Cost
1 µm
0.5 µm
200 nm
100 nm
0.2 µm
0.1 µm
40 nm
20 nm
2000 euros
5000 euros
20000 euros
50000 euros
1X litho
5X reduction litho
Refresher: etch profiles
Wet etching 
isotropic profile
Plasma etching 
anisotropic profile
Wet etched profile: 1 µm thick film
5 µm
3 µm
2 µm
1 µm
Plasma etched profile: 1 µm film
5 µm
3 µm
2 µm
1 µm
Wet etched profile: 200 nm film
5 µm
3 µm
2 µm
1 µm
Plasma etched profile: 200 nm film
5 µm
3 µm
2 µm
1 µm
Etch back
Conformal deposition
Anisotropic etch 200 nm/min
for 1 minute.
200 nm
400 nm
Etch time, end point and overetch
300 nm
100 nm
100 % conformal
deposition.
200 nm
Etch rate 100 nm/min.
Anisotropic etch.
Etch time 1 min.
 spacers formed
Etch time 3 minutes; i.e.
2 minutes overetch
(200%). Clears spacers.
CMOS gate etch selectivity
CMOS linewidth: 5 µm
Polysilicon gate: 500 nm thick
Gate oxide thickness (LW/50) = 100 nm
Etch selectivity poly:oxide = 10:1
Overetch = 50 %
Oxide loss =
nm
Oxide loss =
% of original thickness
CMOS linewidth: 1 µm
Polysilicon gate: 300 nm thick
Gate oxide thickness (LW/50) = 20 nm
Overetch = 50 %
Oxide loss = same % loss as in above,
Calculate etch selectivity poly:oxide
needed to achieve this !
CMOS linewidth: 5 µm
Polysilicon gate: 500 nm thick
Gate oxide thickness (LW/50) = 100 nm
Etch selectivity poly:oxide = 10:1
Presume: 500 nm/min poly  50 nm/min oxide
Overetch = 50 %  0.5 min oxide etched 
Oxide loss = 25 nm
Oxide loss = 25% of original thickness
CMOS linewidth: 1 µm
Polysilicon gate: 300 nm thick
Gate oxide thickness (LW/50) = 20 nm
Overetch = 50 %
Oxide loss = same % loss as in above,
Calculate etch selectivity poly:oxide needed!
Presume 300 nm/min  50% oe is 30 secs
5 nm loss allowed  10 nm/min oxide rate
 30:1 selectivity needed
Gate oxide scaling
Rule of thumb (valid for 1970-2000):
linewith/50 = gate oxide thickness
5 µm  100 nm
1 µm  20 nm
0.5 µm  10 nm
0.2 µm  4 nm
0.1 µm  2 nm HERE WE RUN INTO PROBLEMS…
High-k dielectrics
ZrO2
HfO2
High dielectric constants of
ca. 20 (vs. 4 for SiO2)
Deposited by ALD.
SiO2 formed in the
first steps of ALD,
because H2O used
as a precursor.
Equivalent oxide thickness
 SiO2
EOT 
 t highk  t SiO2
 highk
Example:
6 nm ZrO2: EOT = (4/23)*6 nm + 0 nm = 1 nm
1 nm SiO2 + 6 nm ZrO2: EOT = (4/23)*6 nm + 1 nm = 2 nm
Junction depth scaling
Thermal diffusion
300 nm deep  300 nm sideways
vs.
ion implantation
300 nm deep  100 nm sideways
CMOS S/D scaling
5 µm gate length
0.5 µm S/D diffusion depth
 4 µm Leffective
1.5 µm gate length
0.5 µm S/D diffusion depth
 0.5 µm Leffective
S/D scaling trick #1:
implant energy down
e.g. 50 keV B+
e.g. 10 keV B+ or 50 keV BF2+
Sideways spreading is 1/3 of vertical depth, for both.
S/D scaling trick #2: spacers
Anisotropic etching of a
conformal film
Ion implantation 
Leff = Lithographic !
Spacers and LDDs extended
Energy X
Energy scaled down 
narrow spacer enough.
Thermal budget scaling & RTA
Ion implantation always requires a high temperature
annealing step to get rid of implant damage.
I/I damage anneal time is short compared with diffusion
because only local movement of atoms needed, e.g. to
move an interstitial atom into a lattice site.
As S/D junction needs to be shallower, anneal thermal
budget (T,t) needs to be scaled down.
E.g. 1100oC & 30 secs  1100oC & 15 secs  1050oC &
15 secs but then 1200oC & 1 s  1200oC & 0.1 sec
Sheet resistance scaling
Rs  /T
I/I dose constant 1015 cm-2
Use simple box approximation in transforming dose to concentration
S/D 1 µm deep  1019 cm-3  Rs = 0.01 Ω-cm/10-4 cm = 100 Ω
S/D 0.1 µm  1020 cm-3  0.001 Ω-cm/10-5 cm = 100 Ω
Aspect ratio scaling
Actually, aspect ratio
(height:width) does NOT
scale; it has remained more
or less 1:1 for decades.
8-level IC metallization
Fab cost scaling
1957
1967
1977
1987
1997
2007
2017
0.2 M$
2.5 M$
10 M$
100 M$
1000 M$
3000 M$
?
Fab size scaling
Year
Wafer size
LW
WPM*
1970
1980
1990
2000
2010
2020
3”
100 mm
150 mm
200 mm
300 mm
300 mm
10 µm
2 µm
0.8 µm
0.18 µm
32 nm
11 nm
1000
5000
10000
20000
50000
70000
* Wafer starts per month
Wafer specifications for CMOS
Wafer size
100
125
150
200
300
mm
Thickness
525
625
675
725
775
µm
TTV
3
3
2
1.5
1
µm
Warp
20-30
18-35
20-30
10-30
10-20
µm
Flatness
<3
<2
<1
0.5-1
0.5-0.8
µm
Oxygen
20
17
15
14
12
pmma
OISF
100-200 100
<10
none
none
cm-2
Particles
Particle size
10
0.3
10
0.3
5-10
0.3
10-100
0.16
50-100
0.12
#/wafer
µm
Metal impurities
1012
1011
1011
5*1010
109
atoms/cm2
Related documents