Download Superconducting Nanowire Single

Document related concepts
no text concepts found
Transcript
Superconducting Nanowire
Single-Photon Detectors
K. K. Berggren
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
111114-rochester
[email protected]
1
http://messenger.jhuapl.edu/news_room
111114-rochester
Free-Space Optical Communications
transmitter
109 km
receiver
Boroson, Biswas, Edwards, "Overview
of NASA's mars laser communications
demonstration system," FREE-SPACE
LASER COMM. TECH. XVI 5338: 1628, 2004
Toyoshima, et. al., “Comparison of
microwave and light wave
communication systems in space
applications,” Opt. Eng. 46 015003
(2007)
3
111114-rochester
Free-Space Optical Communications
transmitter
109 km
receiver
Boroson, Biswas, Edwards, "Overview
of NASA's mars laser communications
demonstration system," FREE-SPACE
LASER COMM. TECH. XVI 5338: 1628, 2004
Toyoshima, et. al., “Comparison of
microwave and light wave
communication systems in space
applications,” Opt. Eng. 46 015003
(2007)
hv
hv
time
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000
Encodes 01011001 (4 bits/photon)
4
111114-rochester
Photons
• Illumination in eye from 1 pixel of laptop at 100 km in 1 sec
• Energy inversely proportional to wavelength
– Longer wavelength => harder to detect
5
111114-rochester
Berggren
Superconductive Nanowire
Superconductive
Nanowire
Single-Photon
Detector
Single-Photon Detector
3 µm
electrode
90 nm
electrode
Yang et al., IEEE TAS (2005)
111114-rochester
Gol’tsman et al., APL, (2001).
proximity-effectcorrection features
6
Eye Anatomy
cornea
lens
vitreous
humor
retina
optic
nerve
111114-rochester
7
Eye Anatomy
cornea
light
lens
antireflection
coating
sapphire
substrate
vitreous
humor
NbN
cavity
mirror
niobium
nitride
sapphire
retina
gold….
111114-rochester
contact pad
optic
nerve
8
Tapetum Lucidum of a Cat
retina
~ 100 nm
tapetum
lucidum
Bernstein and Pease, “Electron Microscopy of the Tapetum Lucidum of
the Cat” Journal of Cell Biology, Vol. 5, 35-39, (1959)
111114-rochester
9
Berggren
Eye Anatomy
cornea
light
lens
antireflection
coating
sapphire
substrate
vitreous
humor
NbN
cavity
mirror
niobium
nitride
retina
sapphire
tapetum
lucidum
gold….
111114-rochester
contact pad
optic
nerve
10
Characteristics of Photon Detectors
• Efficiency
incident photons
with no signal
hν
voltage
time
• Reset time
incident photons
blocked by
earlier signal
time
varying delay between
photons and signals
• Jitter
time
t1
• Dark count rate
t2
t3
voltage pulses with no
corresponding photon
time
111114-rochester
11
Nanowire Single-Photon Detector
1 / jitter
[MHz]
104
APPLICATIONS
superconducting nanowire
single-photon detector
• VLSI device evaluation
avalanche photodiode
photomultiplier tube
• LIDAR
transition edge sensor
• Communication
1 / reset time
[MHz]
device
efficiency
[%]
104
100
Comparison at 1.55 µm
111114-rochester
– quantum
– interplanetary
Device Operation
DEVICE OPERATION
111114-rochester
Superconductive Nanowire Behavior
I
critical current, Ic
superconducting
111114-rochester
V
Berggren
Detection Mechanism
Explanation
superconductor is biased near its
transition
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
Detection Mechanism
Explanation
photon-induced hotspot forces bias
current above critical density
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
A. D. Semenov, G. N. Gol’tsman, and A.
A. Korneev, “Quantum detection by
current carrying superconducting
film,” Physica C, vol. 351, pp. 349–356,
2001.
Detection Mechanism
Explanation
resistive barrier spans nanowire
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
Detection Mechanism
Explanation
resistance grows from heating
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
Detection Mechanism
Explanation
current is diverted
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
Detection Mechanism
Explanation
superconductivity is restored
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
111114-rochester
Detection Mechanism Explanation
superconductivity is restored
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
21
111114-rochester
111114-rochester
22
Detection Mechanism
Explanation
bias current is restored
4 nm
niobium nitride
< 100 nm
Ibias
detector
Rload
L
Kerman, Dauler, Keicher,Yang, KB, Gol'tsman,Voronov, Applied Physics Letters, (2006)
111114-rochester
SNSPD integrated in an optical cavity
NbN
gold
Au mirror
~λ/4
sapphire
cavity dielectric
anti-reflection
coating
90 nm
NbN
fiber
sapphire
Cross-section transmission-electron
micrograph
111114-rochester
Rosfjord et al., Opt. Express (2006)
24
Summary of Device Performance
Counts
Normalized
(a.u.) (a.u.)
Normalized Counts
1 ps, 1550 nm
optical pulse
Voltage (mV)
3 ns
Time (ns)
1
28.5 ps FWHM
0.1
0.01
Kerman et al. in APL (2006)
-100
-80
-60
-40
-20
0
20
40
60
80
Time (ps)
Time (ps)
Background Counts
~100 s-1
(97.5% bias, 2.7K)
Detection efficiency
~ 70 %
0.8
~ 65 %
0.4
0
0
111114-rochester
0.5
bias current / Ic
70-nm-wide detector, 140-nm pitch
210-nm-thick cavity
1
Collaboration with
Lincoln Laboratory
25
Fabrication
FABRICATION
111114-rochester
Basic Fabrication Flow
hydrogen silsesquioxane (HSQ)
(electron-beam resist)
gold contact pads
niobium nitride (from collaborators)
sapphire substrate
111114-rochester
Basic Fabrication Flow
hydrogen silsesquioxane (HSQ)
(electron-beam resist)
gold contact pads
niobium nitride (from collaborators)
sapphire substrate
niobium nitride nanowire
111114-rochester
Basic Fabrication Flow
hydrogen silsesquioxane (HSQ)
(electron-beam resist)
gold contact pads
niobium nitride (from collaborators)
sapphire substrate
niobium nitride nanowire
HSQ
anti-reflection coating
111114-rochester
29
Cavity Fabrication Flow
HSQ
Au contact pads
NbN
detector
1nm/
120nm
Ti/Au
mirror
sapphire substrate
HSQ cavity
HSQ
ARC
30
111114-rochester
Photon Statistics
APPLICATION
111114-rochester
31
10 µm
111114-rochester
32
Pseudo-Thermal Source Setup
Ground
Glass
12 V DC Fan (up to 6000 rpm)
Grating-Stabilized
CW Diode Laser
1070 nm
Time-stamp each channel
~7 ns bins
Scattered Light
Speckle
Fiber
4-element
SNSPD
Cryostat
111114-rochester
6-channel
FPGA
PC
33
Element 4 Element 3 Element 2 Element 1
3-photon coincidences
t
t1
t2
2-photon coincidence conditions:
10 µm
t1 = 0
t2 = 0
t1 = t2
3-photon coincidence :
t1 = t2 = 0
111114-rochester
34
3rd-order Intensity Correlations
g(3)(0,0) = 5.87 ~ 3!
“High-order temporal coherences of
chaotic and laser light”, Stevens, Baek, Dauler, Kerman, Molnar, Hamilton,
Berggren, Mirin, and Nam, Optics Express, 18, 1430 (2010)
35
111114-rochester
Photon Statistics
NANO-ANTENNAE
111114-rochester
The Three Keys to Efficiency
coupling
efficiency
resistive state
formation
absorptance
threshold
detection
v
v
active
area
t
×
r
×
×
×
v
×
37
111114-rochester
Antenna – Integrated Detector
top view
large pitch
small pitch
fill the gap with gold
cross section
v
111114-rochester
v
t
v
t
t
Optical Nano-Antenna
…
…
Au
NbN
k
TM
111114-rochester
39
Final Version
Optical Nano-Antenna
…
Au
…
NbN
k
TM
111114-rochester
40
Fabrication
SiO2/
Ti/Au
Au
pad
Au
pad
9 mm
fabrication challenges
• e-beam writing on thick HSQ
• gold migration in evaporation
ion-beam cross-section
Pt
Au
80 nm
600 nm
111114-rochester
Au
sapphire
HSQ
Nano-Optical Antenna for Nanowire Detectors
• Nano-antennae improve collection, permitting 3 x area, with same reset time
• 600-nm pitch, 9-mm-by9-mm area
• 47% device efficiency
• 5 ns reset time
Hu et. al. Optics Express, 2010
111114-rochester
Photon Statistics
SUB-30-NM DEVICES
111114-rochester
43
60 nm
40 nm
30 nm
20 nm
10 nm
80 nm
44
60 nm
40 nm
30 nm
20 nm
10 nm
80 nm
45
60 nm
40 nm
30 nm
20 nm
10 nm
80 nm
46
30-nm-wide-nanowire SNSPD
1 µm
30 nm
111114-rochester
47
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
w = 90 nm
48
111114-rochester
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
constriction-free
constricted
more constricted
w = 90 nm
49
111114-rochester
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
w = 30 nm
constriction-free
constricted
more constricted
w = 90 nm
50
111114-rochester
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
w = 30 nm
constriction-free
constricted
more constricted
w = 90 nm
111114-rochester
A. D. Semenov, G. N. Gol’tsman, and A. A.
Korneev, “Quantum detection by current
carrying superconducting film,” Physica C, vol. 51
351, pp. 349–356, 2001.
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
w = 30 nm
constriction-free
constricted
more constricted
w = 90 nm
111114-rochester
A. D. Semenov, G. N. Gol’tsman, and A. A.
Korneev, “Quantum detection by current
carrying superconducting film,” Physica C, vol. 52
351, pp. 349–356, 2001.
Standard vs Ultranarrow-Nanowire SNSPDs
Constrictions
w = 30 nm
constriction-free
constricted
constriction-free
constricted
more constricted
w = 90 nm
53
111114-rochester
Standard vs Ultranarrow-Nanowire SNSPDs
Negligible responsivity above 2 μm
w = 90 nm
w = 55 nm
w = 100 nm
111114-rochester
Gol’tsman et al., IEEE Trans. Appl. Supercond (2011)
54
Standard vs Ultranarrow-Nanowire SNSPDs
Negligible responsivity above 2 μm
w = 90 nm
w = 55 nm
w = 100 nm
111114-rochester
Gol’tsman et al., IEEE Trans. Appl. Supercond (2011)
55
Detection efficiency vs IB and wavelength
w = 85 nm
λ = 0.5 μm
λ = 2 μm
56
111114-rochester
Detection efficiency vs IB and wavelength
w = 30 nm
λ = 0.5 μm
λ = 2 μm
57
111114-rochester
Detection efficiency vs IB, wavelength and width
η (%)
0
3.6
w = 85 nm
7.2
w = 50 nm
w = 30 nm
58
111114-rochester
Fabrication
SIGNAL TO NOISE RATIO
111114-rochester
59
Low signal to noise ratio
60
111114-rochester
Low signal to noise ratio
61
111114-rochester
“A Cascade Switching Superconducting Single Photon Detector,”
M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F.
Mattioli, R. Leoni, B. Voronov, and G. Gol'tsman,
Appl. Phys. Lett. 91, 262509 (2007)
111114-rochester
62
Superconducting Nanowire Avalanche Photodetectors
(SNAPs)
63
111114-rochester
Superconducting Nanowire Avalanche Photodetectors
(SNAPs)
30 nm
1.4 µm
111114-rochester
64
Basic model of SNAP operation
+
VOUT -
RA
IB
LS
111114-rochester
65
Basic model of SNAP operation
+
VOUT -
RA
IB
LS
111114-rochester
66
Basic model of SNAP operation
+
VOUT -
RA
IB
LS
111114-rochester
67
Basic model of SNAP operation
+
VOUT -
RA
IB
LS
111114-rochester
68
SNAPs improve the SNR
4-SNAP
3-SNAP
2-SNAP
SNSPD
69
111114-rochester
Experimental results
2-SNAP
SNSPD
λ = 1550 nm
70
111114-rochester
Experimental results
threshold current
2-SNAP
SNSPD
λ = 1550 nm
71
111114-rochester
Experimental results
3-SNAP
2-SNAP
SNSPD
λ = 1550 nm
72
111114-rochester
Experimental results
3-SNAP
2-SNAP
SNSPD
λ = 1550 nm
In which bias range are 3-SNAPs working as single-photon detectors?
73
111114-rochester
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
74
SNAP operation below the avalanche current
arm
+
VOUT -
RA
IB
LS
111114-rochester
75
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
76
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
77
SNAP operation below the avalanche current
trigger
+
VOUT -
RA
IB
LS
111114-rochester
78
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
79
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
80
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
81
SNAP operation below the avalanche current
+
VOUT -
RA
IB
LS
111114-rochester
82
Experimental results
threshold current
3-SNAP
2-SNAP
SNSPD
λ = 1550 nm
arm-trigger
avalanche
83
111114-rochester
η Power Dependence Explained
increasing
power
IAV
111114-rochester
84
η Power Dependence Explained
photon arm +
dark count trigger
IAV
photon arm +
photon trigger
85
111114-rochester
Electro-thermal simulation of SNAPs
secondary
initiating
Iout
s
initiating:
n
normal / superconducting
boundary
s
secondary:
photon
avalanche
111114-rochester
n
J.Yang et al. IEEE TAS (2007)
F. Marsili et al., APL (2011)
superconducting
86
3-SNAP in “arm-trigger” regime
arm
trigger
Pseudo 2-SNAP
I3
I2
I1
Iout
superconducting
87
111114-rochester
Inter-arrival time measurements
Avalanche mode:
voltage
hν
time
111114-rochester
88
Inter-arrival time measurements
Avalanche mode:
voltage
hν
tD1
τΦ1
tD2
τΦ2
tD3
τΦ3
f tD  t   ft   t 
111114-rochester
tD4
τΦ4
time
89
Inter-arrival time measurements
Arm-trigger mode:
voltage
T
A
T
A
T
time
111114-rochester
90
Inter-arrival time measurements
Arm-trigger mode:
voltage
T
A
tD1
t2Φ1
T
A
tD2
t2Φ2
f tD  t   ft 2   t 
111114-rochester
T
time
91
Inter-arrival time histograms
IB > IAV
IB < IAV
F. Marsili et al., Nanolett. (2011)
111114-rochester
92
20-nm-wide-nanowire SNAPs
1.1 µm
20 nm
111114-rochester
93
20-nm-nanowire-width SNAPs
4-SNAP
3-SNAP
2-SNAP
λ = 1550 nm
111114-rochester
94
The Future
• Scaling sensitivity out to longer wavelengths
– (is high-efficiency single-photon detection possible at
10 um?)
• Understanding the source of jitter
– Intrinsic to material? Electronic? Thermal? Electrothermal?
– Dependent on design/architecture? Engineerable?
• Can we break the 1 ns speed limit?
– Need to investigate new materials
– Need to investigate new device designs
• Is near-100% efficiency possible?
111114-rochester
95
1.1 µm
10 nm
111114-rochester
96
Acknowledgements
MIT Quantum Nanostructures and
Nanofabrication Group
Vikas Anant (now at PhotonSpot)
Francesco Bellei
Andrew Dane
Eric Dauler (Lincoln Lab Fellow, now at
Lincoln Laboratory)
Charles Herder (undergraduate)
Xiaolong Hu (now at U. of Michigan)
Hasan Korre
Francesco Marsilli (post-doc, now at
NIST)
Faraz Najafi
Kristen Sunter
Joel Yang (ASTAR Fellowship, now at
A*STAR)
111114-rochester
MIT Lincoln Laboratory
Eric Dauler
Andrew J. Kerman
Richard Molnar
Bryan Robinson
Scott Hamilton
NIST
Martin J. Stevens
Burm Baek
Sae Woo Nam
Richard P. Mirin
Other Collaborators
M. Csete (U. of Szeged)
Boris Voronov (MSPU)
Gregory Gol’tsman (MSPU)
Sponsors
AFOSR, IARPA, DARPA, NASA, NSF
Photon Statistics
END OF
PRESENTATION
111114-rochester
98
Related documents