Download sum, difference and cofuntion identities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
What you’ll learn about
•
•
•
•
•
•
•
Identities
Basic Trigonometric Identities
Pythagorean Identities
Cofunction Identities
Odd-Even Identities
Simplifying Trigonometric Expressions
Solving Trigonometric Equations
… and why
Identities are important when working with
trigonometric
functions in calculus.
Basic Trigonometric Identities
Reciprocal Identites
1
1
csc 
sec 
sin 
cos
1
cot  
tan 
1
sin  
csc
1
tan  
cot 
1
cos 
sec
Quotient Identites
sin 
cos
tan  
cot 
cos
tan 
Pythagorean Identities
cos   sin   1
1  tan   sec 
cot   1  csc 
2
2
2
2
2
2
Example Using Identities
Find sin and cos if tan   3 and cos  0.
1  tan 2   sec 2 
To find sin , use tan   3
1  9  sec 2 
and cos  1 / 10.
sin 
tan  
cos
sin   cos tan 
sec   10
cos  1 / 10


sin   1 / 10 3
sin   3 / 10
Therefore, cos  1 / 10 and sin  3 / 10
Cofunction Identities
y
Angle A: sin A 
r
x
cos A 
r
x
Angle B: sin B 
r
y
cos B 
r
y
tan A 
x
x
cot A 
y
x
tan B 
y
y
cot B 
x
r
sec A 
x
r
csc A 
y
r
sec B 
y
r
csc B 
x
Cofunction Identities


sin      cos 
2



tan      cot 
2



sec      csc 
2



cos      sin 
2



cot      tan 
2



csc      sec 
2

Even-Odd Identities
sin(x)   sin x
csc(x)   csc x
cos(x)  cos x
sec(x)  sec x
tan(x)   tan x
cot(x)   cot x
Example Simplifying by
Factoring and Using Identities
Simplify the expression cos 3 x  cos xsin2 x.
Example Simplifying by
Factoring and Using Identities
Simplify the expression cos 3 x  cos xsin2 x.
cos x  cos x sin x  cos x(cos x  sin x)
 cos x(1)
Pythagorean Identity
 cos x
3
2
2
2
Example Simplifying by
Expanding and Using Identities
Simplify the expression:
csc x -1csc x  1
cos2 x
Example Simplifying by
Expanding and Using Identities
csc x  1csc x  1  csc 2 x  1
cos 2 x
(a  b)(a  b)  a 2  b 2
cos 2 x
cot 2 x

Pythagorean Identity
2
cos x
cos 2 x
1
cos


cot  
2
2
sin x cos x
sin 
1

sin 2 x
 csc 2 x
Example Solving a
Trigonometric Equation
Find all values of x in the interval 0,2 
sin 3 x
that solve
 tan x.
cos x
Example Solving a
Trigonometric Equation
3
sin x
 tan x
cos x
sin 3 x sin x

cos x cos x
3
sin x  sin x
Reject the posibility that cos 2 x  0
because it would make both
sides of the original equation
undefined. sin x  0 in the interval
0  x  2 when x  0 and x   .
sin 3 x  sin x  0
sin x(sin x  1)  0
2


sin x  0
or
2
sin
x
cos
x 0
 
cos 2 x  0
Quick Review
Evaluate the expression.
 4
1. sin  
 5
1
 12 
2. cos   
 13 
1
Factor the expression into a product of linear factors.
3. 2a 2  3ab  2b 2
4. 9u 2  6u  1
Simplify the expression.
2 3
5. 
y x
Quick Review Solutions
Evaluate the expression.
 4
1. sin  
 5
1
53.13o  0.927 rad
 12 
2. cos   
 13 
1
157.38o  2.747 rad
Factor the expression into a product of linear factors.
3. 2a 2  3ab  2b 2
4. 9u 2  6u  1
2a  b a  2b 
2
3u  1
Simplify the expression.
2 3
2x  3y
5. 
y x
xy
What you’ll learn about
•
•
•
•
•
Cosine of a Difference
Cosine of a Sum
Sine of a Difference or Sum
Tangent of a Difference or Sum
Verifying a Sinusoid Algebraically
… and why
These identities provide clear
examples of how different
the algebra of functions can be from
the algebra of real
numbers.
Cosine of a Sum or
Difference
cos(u  v)  cos u cos v  sin u sin v
(Note that the sign does not switch in either case)
Example Using the Cosine-ofa-Difference Identity
Find the exact value of cos 75º without using a calculator.
cos 75º  cos 45º 30º 
 cos 45º cos 30º  sin 45º sin 30º
 2   3  2   1


 




2
2
2


 
 2

6 2
4
Sine of a Sum or
Difference
sin u  v   sinu cos v  sin v cosu
(Note that the sign does not switch in either case.)
Example Using the Sum
and Difference Formulas
Write the following expression as the sine or




cosine of an angle: sin cos  sin cos
3
4
4
3
Example Using the Sum
and Difference Formulas
Write the following expression as the sine or




cosine of an angle: sin cos  sin cos
3
4
4
3








Recognize sin cos  sin cos
as the sin(u  v).
3
4
4
3
 
sin cos  sin cos  sin   
 3 4
3
4
4
3
7
 sin
12
Tangent of a Difference of
Sum
sin(u  v) sin u cos v  sin v cos u
tan(u  v) 

cos(u  v) cos u sin v  sin u sin v
or
tan u  tan v
tan(u ) 
1  tan u tan v
Example Expressing a Sum
of Sinusoids as a Sinusoid
Find values for a, b, and h so that for all x,
4 cos 2x  7sin 2x  asin b x  h  .
Example Expressing a Sum
of Sinusoids as a Sinusoid
4 cos 2x  7sin 2x  asin b x  h 
2
is a sinusoid with period
  , so b  2
2
4 cos 2x  7sin 2x  asin  2 x  h 
 asin 2x  2h 
 asin 2x cos 2h  a cos 2x sin 2h
4 cos 2x  7sin 2x  asin 2h cos 2x  a cos 2h sin 2x,
so
4  asin 2h
and
 7  a cos2h
Example Expressing a Sum
of Sinusoids as a Sinusoid
4  asin 2h and
4
sin 2h  
and
a
4 a 4
so tan 2h 

7 a 7
so
 7  a cos 2h
7
cos 2h  
a
 4
so possible values of 2h are tan    n
 7
1
Example Expressing a Sum
of Sinusoids as a Sinusoid
4
To find a, we use sin 2h  
a
7
and cos 2h  
a
Because a is the hypotenuse,
a
7   4 
2
2
 65
Thus,
 
1 1  4    
4 cos 2x  7sin 2x  65 sin 2  x  tan     
 7  2 
2
 
Example Expressing a Sum
of Sinusoids as a Sinusoid
Support Graphically
The graphs of
y1  4 cos 2x  7sin 2x
and
 
1 1  4    
y2  65 sin 2  x  tan     
 7  2 
2
 
are identical.
Example Expressing a Sum
of Sinusoids as a Sinusoid
Interpret
1 1  4  
The values are a  65, b  2, and h  tan   
 7 2
2
(other values are possible).
The amplitude is 65, the peridod is  , and
1 1  4  
the phase shift is tan    radians.
 7 2
2
Quick Review
Express the angle as a sum or difference of special angles
(multiples of 30o, 45o,  /6, or  /4). Answers are not unique.
1. 15o
2.  /12
3. 75o
Tell whether or not the identity f (x  y)  f (x)  f (y)
holds for the function f .
4. f (x)  16x
5. f (x)  2e x
Quick Review Solutions
Express the angle as a sum or difference of special angles
(multiples of 30o, 45o,  /6, or  /4). Answers are not unique.
1. 15o
45o  30o
2.  /12



3 4
3. 75o
30o  45o
Tell whether or not the identity f (x  y)  f (x)  f (y)
holds for the function f .
4. f (x)  16x yes
5. f (x)  2e x
no
What you’ll learn about
•
•
•
•
Double-Angle Identities
Power-Reducing Identities
Half-Angle Identities
Solving Trigonometric Equations
… and why
These identities are useful in calculus
courses.
Double Angle Identities
sin 2u  2sinu cosu
cos 2 u  sin 2 u

2
cos 2u  2 cos u  1
1  2sin 2 u

2 tanu
tan 2u 
2
1  tan u
Proving a Double-Angle
Identity
cos 2x  cos(x  x)
 cos x cos x - sin x sin x
 cos 2 x  sin 2 x
Power-Reducing Identities
1  cos 2u
sin u 
2
1  cos 2u
2
cos u 
2
1  cos 2u
2
tan u 
1  cos 2u
2
Example Reducing a
Power of 4
Rewrite sin 4 x in terms of trigonometric functions with
no power greater than 1.
Example Reducing a
Power of 4
sin x  sin x 
4
2
2
 1  cos 2x 



2
2
1  2 cos 2x  cos 2 2x

4
1 cos 2x 1  1  cos 4x 
 
 


4
2
4
2
1 cos 2x 1  cos 4x
 

4
2
8
Half-Angle Identities
u
1  cosu
sin  
2
2
u
1  cosu
cos  
2
2
 1  cosu

1

cosu

u 1  cosu
tan  
2  sinu
 sinu
1  cosu

Example Using a Double
Angle Identity
Solve cos x  cos 3x  0 in the interval [0,2 ).
Example Using a Double
Angle Identity
Solve cos x  cos 3x  0 in the interval [0,2 ).
Solve Graphically
The graph suggest that
there are six solutions:
0.79, 1.57, 2.36,
3.93, 4.71, 5.50.
Example Using a Double
Angle Identity
Solve cos x  cos 3x  0 in the interval [0,2 ).
Confirm Algebraically
cos x  cos 3x  0
cos x  cos x cos 2x  sin x sin 2x  0


cos x  cos x 1  2sin 2 x  sin x 2sin x cos x   0
cos x  cos x  2 cos x sin 2 x  2 cos x sin 2 x  0
2 cos x  4 cos x sin 2 x  0


2 cos x 1  2sin 2 x  0
Example Using a Double
Angle Identity
2 cos x 1  2sin x  0
2
cos x  0

3
x  or
2
2

3
x  or
2
2
or
or
or
1  2sin x  0
2
2
sin x  
2
 3 5
7
x  , , , or
4 4 4
4
The six exact solutions in the given interval are
 
3 5 3
7
, ,
,
,
, and
.
4 2 4 4 2
4
Quick Review
Find the general solution of the equation.
1. cot x  1  0
2. (sin x)(1  cos x)  0
3. cos x  sin x  0


4. 2sin x  2 2sin x  1  0
5. Find the height of the isosceles triangle with
base length 6 and leg length 4.
Quick Review Solutions
Find the general solution of the equation.
3
1. cot x  1  0
x
 n
4
2. (sin x)(1  cos x)  0
3. cos x  sin x  0
x  n
x

4
 n
Quick Review Solutions
Find the general solution of the equation.


4. 2sin x  2 2sin x  1  0
5
7
x
 2 n, x 
 2 n,
4
4

5
x   2 n, x 
 2 n
6
6
5. Find the height of the isosceles triangle with
base length 6 and leg length 4.
7
END OF THE LESSON 
Related documents