Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
What you’ll learn about • • • • • • • Identities Basic Trigonometric Identities Pythagorean Identities Cofunction Identities Odd-Even Identities Simplifying Trigonometric Expressions Solving Trigonometric Equations … and why Identities are important when working with trigonometric functions in calculus. Basic Trigonometric Identities Reciprocal Identites 1 1 csc sec sin cos 1 cot tan 1 sin csc 1 tan cot 1 cos sec Quotient Identites sin cos tan cot cos tan Pythagorean Identities cos sin 1 1 tan sec cot 1 csc 2 2 2 2 2 2 Example Using Identities Find sin and cos if tan 3 and cos 0. 1 tan 2 sec 2 To find sin , use tan 3 1 9 sec 2 and cos 1 / 10. sin tan cos sin cos tan sec 10 cos 1 / 10 sin 1 / 10 3 sin 3 / 10 Therefore, cos 1 / 10 and sin 3 / 10 Cofunction Identities y Angle A: sin A r x cos A r x Angle B: sin B r y cos B r y tan A x x cot A y x tan B y y cot B x r sec A x r csc A y r sec B y r csc B x Cofunction Identities sin cos 2 tan cot 2 sec csc 2 cos sin 2 cot tan 2 csc sec 2 Even-Odd Identities sin(x) sin x csc(x) csc x cos(x) cos x sec(x) sec x tan(x) tan x cot(x) cot x Example Simplifying by Factoring and Using Identities Simplify the expression cos 3 x cos xsin2 x. Example Simplifying by Factoring and Using Identities Simplify the expression cos 3 x cos xsin2 x. cos x cos x sin x cos x(cos x sin x) cos x(1) Pythagorean Identity cos x 3 2 2 2 Example Simplifying by Expanding and Using Identities Simplify the expression: csc x -1csc x 1 cos2 x Example Simplifying by Expanding and Using Identities csc x 1csc x 1 csc 2 x 1 cos 2 x (a b)(a b) a 2 b 2 cos 2 x cot 2 x Pythagorean Identity 2 cos x cos 2 x 1 cos cot 2 2 sin x cos x sin 1 sin 2 x csc 2 x Example Solving a Trigonometric Equation Find all values of x in the interval 0,2 sin 3 x that solve tan x. cos x Example Solving a Trigonometric Equation 3 sin x tan x cos x sin 3 x sin x cos x cos x 3 sin x sin x Reject the posibility that cos 2 x 0 because it would make both sides of the original equation undefined. sin x 0 in the interval 0 x 2 when x 0 and x . sin 3 x sin x 0 sin x(sin x 1) 0 2 sin x 0 or 2 sin x cos x 0 cos 2 x 0 Quick Review Evaluate the expression. 4 1. sin 5 1 12 2. cos 13 1 Factor the expression into a product of linear factors. 3. 2a 2 3ab 2b 2 4. 9u 2 6u 1 Simplify the expression. 2 3 5. y x Quick Review Solutions Evaluate the expression. 4 1. sin 5 1 53.13o 0.927 rad 12 2. cos 13 1 157.38o 2.747 rad Factor the expression into a product of linear factors. 3. 2a 2 3ab 2b 2 4. 9u 2 6u 1 2a b a 2b 2 3u 1 Simplify the expression. 2 3 2x 3y 5. y x xy What you’ll learn about • • • • • Cosine of a Difference Cosine of a Sum Sine of a Difference or Sum Tangent of a Difference or Sum Verifying a Sinusoid Algebraically … and why These identities provide clear examples of how different the algebra of functions can be from the algebra of real numbers. Cosine of a Sum or Difference cos(u v) cos u cos v sin u sin v (Note that the sign does not switch in either case) Example Using the Cosine-ofa-Difference Identity Find the exact value of cos 75º without using a calculator. cos 75º cos 45º 30º cos 45º cos 30º sin 45º sin 30º 2 3 2 1 2 2 2 2 6 2 4 Sine of a Sum or Difference sin u v sinu cos v sin v cosu (Note that the sign does not switch in either case.) Example Using the Sum and Difference Formulas Write the following expression as the sine or cosine of an angle: sin cos sin cos 3 4 4 3 Example Using the Sum and Difference Formulas Write the following expression as the sine or cosine of an angle: sin cos sin cos 3 4 4 3 Recognize sin cos sin cos as the sin(u v). 3 4 4 3 sin cos sin cos sin 3 4 3 4 4 3 7 sin 12 Tangent of a Difference of Sum sin(u v) sin u cos v sin v cos u tan(u v) cos(u v) cos u sin v sin u sin v or tan u tan v tan(u ) 1 tan u tan v Example Expressing a Sum of Sinusoids as a Sinusoid Find values for a, b, and h so that for all x, 4 cos 2x 7sin 2x asin b x h . Example Expressing a Sum of Sinusoids as a Sinusoid 4 cos 2x 7sin 2x asin b x h 2 is a sinusoid with period , so b 2 2 4 cos 2x 7sin 2x asin 2 x h asin 2x 2h asin 2x cos 2h a cos 2x sin 2h 4 cos 2x 7sin 2x asin 2h cos 2x a cos 2h sin 2x, so 4 asin 2h and 7 a cos2h Example Expressing a Sum of Sinusoids as a Sinusoid 4 asin 2h and 4 sin 2h and a 4 a 4 so tan 2h 7 a 7 so 7 a cos 2h 7 cos 2h a 4 so possible values of 2h are tan n 7 1 Example Expressing a Sum of Sinusoids as a Sinusoid 4 To find a, we use sin 2h a 7 and cos 2h a Because a is the hypotenuse, a 7 4 2 2 65 Thus, 1 1 4 4 cos 2x 7sin 2x 65 sin 2 x tan 7 2 2 Example Expressing a Sum of Sinusoids as a Sinusoid Support Graphically The graphs of y1 4 cos 2x 7sin 2x and 1 1 4 y2 65 sin 2 x tan 7 2 2 are identical. Example Expressing a Sum of Sinusoids as a Sinusoid Interpret 1 1 4 The values are a 65, b 2, and h tan 7 2 2 (other values are possible). The amplitude is 65, the peridod is , and 1 1 4 the phase shift is tan radians. 7 2 2 Quick Review Express the angle as a sum or difference of special angles (multiples of 30o, 45o, /6, or /4). Answers are not unique. 1. 15o 2. /12 3. 75o Tell whether or not the identity f (x y) f (x) f (y) holds for the function f . 4. f (x) 16x 5. f (x) 2e x Quick Review Solutions Express the angle as a sum or difference of special angles (multiples of 30o, 45o, /6, or /4). Answers are not unique. 1. 15o 45o 30o 2. /12 3 4 3. 75o 30o 45o Tell whether or not the identity f (x y) f (x) f (y) holds for the function f . 4. f (x) 16x yes 5. f (x) 2e x no What you’ll learn about • • • • Double-Angle Identities Power-Reducing Identities Half-Angle Identities Solving Trigonometric Equations … and why These identities are useful in calculus courses. Double Angle Identities sin 2u 2sinu cosu cos 2 u sin 2 u 2 cos 2u 2 cos u 1 1 2sin 2 u 2 tanu tan 2u 2 1 tan u Proving a Double-Angle Identity cos 2x cos(x x) cos x cos x - sin x sin x cos 2 x sin 2 x Power-Reducing Identities 1 cos 2u sin u 2 1 cos 2u 2 cos u 2 1 cos 2u 2 tan u 1 cos 2u 2 Example Reducing a Power of 4 Rewrite sin 4 x in terms of trigonometric functions with no power greater than 1. Example Reducing a Power of 4 sin x sin x 4 2 2 1 cos 2x 2 2 1 2 cos 2x cos 2 2x 4 1 cos 2x 1 1 cos 4x 4 2 4 2 1 cos 2x 1 cos 4x 4 2 8 Half-Angle Identities u 1 cosu sin 2 2 u 1 cosu cos 2 2 1 cosu 1 cosu u 1 cosu tan 2 sinu sinu 1 cosu Example Using a Double Angle Identity Solve cos x cos 3x 0 in the interval [0,2 ). Example Using a Double Angle Identity Solve cos x cos 3x 0 in the interval [0,2 ). Solve Graphically The graph suggest that there are six solutions: 0.79, 1.57, 2.36, 3.93, 4.71, 5.50. Example Using a Double Angle Identity Solve cos x cos 3x 0 in the interval [0,2 ). Confirm Algebraically cos x cos 3x 0 cos x cos x cos 2x sin x sin 2x 0 cos x cos x 1 2sin 2 x sin x 2sin x cos x 0 cos x cos x 2 cos x sin 2 x 2 cos x sin 2 x 0 2 cos x 4 cos x sin 2 x 0 2 cos x 1 2sin 2 x 0 Example Using a Double Angle Identity 2 cos x 1 2sin x 0 2 cos x 0 3 x or 2 2 3 x or 2 2 or or or 1 2sin x 0 2 2 sin x 2 3 5 7 x , , , or 4 4 4 4 The six exact solutions in the given interval are 3 5 3 7 , , , , , and . 4 2 4 4 2 4 Quick Review Find the general solution of the equation. 1. cot x 1 0 2. (sin x)(1 cos x) 0 3. cos x sin x 0 4. 2sin x 2 2sin x 1 0 5. Find the height of the isosceles triangle with base length 6 and leg length 4. Quick Review Solutions Find the general solution of the equation. 3 1. cot x 1 0 x n 4 2. (sin x)(1 cos x) 0 3. cos x sin x 0 x n x 4 n Quick Review Solutions Find the general solution of the equation. 4. 2sin x 2 2sin x 1 0 5 7 x 2 n, x 2 n, 4 4 5 x 2 n, x 2 n 6 6 5. Find the height of the isosceles triangle with base length 6 and leg length 4. 7 END OF THE LESSON