Download CH.2 Electric Field Intensity

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CHAPTER (2)
Electric Charges, Electric Charge
Densities and
Electric Field Intensity
Charge Configuration
a) Point Charge:
The concept of the point charge is used when the
dimensions of an electric charge distribution are very
small compared to the distance to the neighboring
charges, i.e. the point charge is occupying a very small
physical space
b) Distributed Charge
The charge may be distributed along a line, among a
surface or among a volume.
(1) Line Charge:
+
The line charge density 𝝆𝒍 is
defined as the charge per unit
+ + + +
length.
βˆ†π‘Έ π‘ͺ
𝝆𝒍 = π’π’Šπ’Žβˆ†π’β†’πŸŽ
οΏ½ οΏ½π’ŽοΏ½
βˆ†π’
So,
𝝆𝒍 =
𝒅𝑸
𝒅𝒍
+
++ ++
+
+
dl
+
+
+
dQ = ρL dl
+
οΏ½π‘ͺοΏ½π’ŽοΏ½
𝒅𝑸 = 𝝆𝒍 𝒅𝒍
The total charge Q of the line can be determined by
𝒍
𝒍
𝑸 = οΏ½ 𝒅𝑸 = οΏ½ 𝝆𝒍 𝒅𝒍
𝟎
𝟎
[π‘ͺ]
For uniform line charge, where 𝝆𝒍 is constant
[π‘ͺ]
𝑸 = 𝝆𝒍 𝒍
(2) Surface Charge:
U
The surface charge density 𝝆𝒔 is defined as the charge
per unit surface area.
βˆ†π‘Έ
𝝆𝒔 = π’π’Šπ’Žβˆ†π’”β†’πŸŽ
βˆ†π’”
So,
𝒅𝑸
𝝆𝒔 =
𝒅𝒔
οΏ½π‘ͺοΏ½ 𝟐 οΏ½
π’Ž
οΏ½π‘ͺοΏ½ 𝟐 οΏ½
π’Ž
𝒅𝑸 = 𝝆𝒔 𝒅𝒔
The total charge Q of the surface can be determined by
𝑸 = οΏ½ 𝒅𝑸 = οΏ½ 𝝆𝒔 𝒅𝒔
For uniform surface charge, where 𝝆𝒔 is constant
𝑸 = 𝝆𝒔 𝑺
[π‘ͺ]
3) Volume charge density (𝝆𝒗 )
U
βˆ†π‘Έ
𝝆𝒗 = π’π’Šπ’Žβˆ†π’—β†’πŸŽ
βˆ†π’—
So,
𝝆𝒗 =
οΏ½π‘ͺοΏ½ πŸ‘ οΏ½
π’Ž
οΏ½π‘ͺοΏ½ 𝟐 οΏ½
π’Ž
𝒅𝑸
𝒅𝒗
dv
dQ = ρv dv
𝒅𝑸 = 𝝆𝒗 𝒅𝒗
The total charge Q of the surface can be determined by
𝑸 = οΏ½ 𝒅𝑸 = οΏ½ 𝝆𝒗 𝒅𝒗
For uniform volume charge, where 𝝆𝒗 is constant
U
U
𝑸 = 𝝆𝒗 𝑽
[π‘ͺ]
Example:
A uniform spherical volume charge density
distribution contains a total charge of 10-8 C, if the
radius of the sphere =2x10-2 m. Find ρv .
Solution:
Q = 10 βˆ’8 C , r = 2 * 10 βˆ’2 m , V =
4Ο€ 3 4Ο€
r = (2 * 10 βˆ’2 ) 3 = 8 * 10 βˆ’6 m 2
3
3
Q
10 βˆ’8
∴ ρv = =
= 2.98 * 10 βˆ’4 C m βˆ’3
V 4Ο€
* 8 * 10 βˆ’8
3
.
Example:
U
A non-uniform spherical volume charge density
π’Œ
distribution with 𝝆𝒗 = 𝟏 C.m-3. Find the total
𝒓𝒔
charge contained in the volume of the sphere of
radius a [m]
P
P
Solution:
U
𝒅𝑸 = 𝝆𝒗 𝒅𝒗
𝑸 = οΏ½ 𝒅𝑸 = οΏ½ 𝝆𝒗 𝒅𝒗
= οΏ½
π’ŒπŸ 𝟐
𝒓 π’”π’Šπ’πœ½ π’…πœ½ 𝒅𝝋
𝒓𝒔 𝒔
𝒂
π’“πŸπ’”
[βˆ’π’„π’π’” 𝜽 ][βˆ’π’„π’π’” 𝜽 ]𝝅
𝑸 = π’ŒπŸ οΏ½ οΏ½ [𝝓]πŸπ…
𝟎
𝟎
𝟐 𝟎
𝑸 = πŸπ…π’ŒπŸ π’‚πŸ
π‘ͺ
Coloumb’s Law:
Force Between Two Point Charges:
The force between two stationary point charges
Q1,Q2 is proportional to the product of the two
charges and inversely proportional to the square of the
distance R between them.
F21
R
Q1
aΜ‚12 F12
Q2
οΏ½π‘­βƒ—πŸπŸ =
οΏ½βƒ—πŸπŸ =
𝑭
π‘ΈπŸ π‘ΈπŸ
οΏ½
𝒂
πŸ’π…πœΊπ’ π‘ΉπŸ οΏ½π‘ΉοΏ½βƒ—πŸπŸ
π‘ΈπŸ π‘ΈπŸ
οΏ½
𝒂
πŸ’π…πœΊπ’ π‘ΉπŸ οΏ½π‘ΉοΏ½βƒ—πŸπŸ
οΏ½οΏ½π‘ΉοΏ½βƒ—πŸπŸ = βˆ’π’‚
οΏ½οΏ½π‘ΉοΏ½βƒ—πŸπŸ unit vector from charge Q 1 to Q 2
Where: 𝒂
charge.
R
R
R
R
and, πœΊπ’ =
πŸπŸŽβˆ’πŸ—
πŸ‘πŸ”π…
= πŸ–. πŸ–πŸ“π’™πŸπŸŽβˆ’πŸπŸ 𝑭/π’Ž
Force on Point Charge due to n Point Charges:
�⃗𝒕 on point charge 𝑸𝒕 due to n point charges can be
Force 𝑭
determined as
R1t
Q1
𝒏
�⃗𝒕 = οΏ½
𝑭
π’Š=𝟏
π‘Έπ’Š 𝑸𝒕
οΏ½ οΏ½βƒ—π’Šπ’• [𝑡]
𝟐 𝒂�𝑹
πŸ’π…πœΊπ’ π‘Ήπ’Šπ’•
Qt
R2t
Rn t
Qn
Example:
U
οΏ½βƒ— in vacuum on a point Q 1 =10-4 C due to a
Find the force 𝑭
point charge Q 2 =2*10-5 C where Q 1 is centered at point
(0,1,2)m and Q 2 at (2,4,5)
R
R
R
R
P
P
R
R
Solution:
U
F=
Q1Q2
4πΡ 0 R 2 21
∧
a 21 =
Q1Q2
R21
3
4πΡ 0 R21
R21 = (0 βˆ’ 2) xΛ† + (1 βˆ’ 4) yΛ† + (2 βˆ’ 5) zΛ†
= βˆ’2 xΛ† βˆ’ 3 yΛ† βˆ’ 3zΛ†
∴ R21 = 4 + 9 + 9 = 22
R
R
P
P
aˆ 21 =
∴F =
R21 βˆ’ 2 xΛ† βˆ’ 3 yΛ† βˆ’ 3zΛ†
=
R21
22
(0 βˆ’4 βˆ— 2 βˆ— 10 βˆ’5 ) β‹… (βˆ’2 xΛ† βˆ’ 3 yΛ† βˆ’ 3zΛ†)
4Ο€ βˆ— 8.85 βˆ— 10 βˆ’12 ( 22 ) 2 β‹… 22
N
Electric Field Intensity at a Point due to
Point Charge Q:
It is a vector force acting on a unit (+ve) charge. The
electric field intensity due to a point located at distance R
from the charge Q is given by:
�𝑬
οΏ½βƒ— =
οΏ½οΏ½βƒ—
π‘Έβˆ— 𝟏
𝑸𝑹
𝒗𝒐𝒍𝒕�
οΏ½
𝒂
=
οΏ½
οΏ½βƒ—
𝑹
π’Žπ’†π’•π’†π’“ (𝑽/π’Ž)
πŸ’π…πœΊπ’ π‘ΉπŸ
πŸ’π…πœΊπ’ π‘ΉπŸ‘
Electric Field Intensity at a Point due to Point
Charges Q1 , Q2 ,….., Qn:
If we have a system of charges Q 1 , Q 2 …Q n . the total
electric field at a point is the vector sum of all fields
due to the different charges.
οΏ½οΏ½βƒ—
�𝑬⃗𝒕 = βˆ‘π’π’Š=𝟏 π‘Έπ’Š 𝑹 πŸ‘ 𝒂
οΏ½οΏ½π‘ΉοΏ½βƒ—π’Šπ’• [𝑡/π‘ͺ]
πŸ’π…πœΊ 𝑹
𝒐
𝒏
�𝑬⃗𝒕 = οΏ½
π’Š=𝟏
π‘Έπ’Š
οΏ½ οΏ½βƒ—π’Š [𝑡/π‘ͺ]
𝟐 𝒂�𝑹
πŸ’π…πœΊπ’ π‘Ήπ’Š
Ξ±
R1
Q1
aΜ‚1
R2
aΜ‚ 2
Q2
Rn
aΜ‚ n
Qn
Example:
Find the electric field intensity at the point (2,4,5) m, due to
a point charge Q = 2*10-5 C, located at (0,1,2) m.
Solution:
QR
E =
4πΡ 0 R 3
R = (2 βˆ’ 0) xΛ† + (4 βˆ’ 1) yΛ† + (5 βˆ’ 2) zΛ†
= 2 xˆ + 3 yˆ + 3z
R = 4 + 9 + 9 = 22
E=
2 βˆ— 10 βˆ’5 (2 xΛ† + 3 yΛ† + 3zΛ†)
4Ο€ (8.85 βˆ— 10 )( 22 )
βˆ’12
3
= ... xˆ + ... yˆ + ... zˆ
Electric Field Intensity at a point p (rc, Ο†, z)
due to line charge
��𝑹�⃗
𝒅𝑸 𝒂
οΏ½οΏ½βƒ— =
𝒅𝑬
πŸ’π…πœΊπ’ π‘ΉπŸ
z
dE
R
�𝑬⃗ = οΏ½
𝒂
dl
a
οΏ½βƒ—
𝒅𝑸 �𝑹
=
πŸ’π…πœΊπ’ π‘ΉπŸ‘
𝒃
b
y
x
οΏ½βƒ—
𝝆𝒍 𝒅𝒍 �𝑹
πŸ’π…πœΊπ’ π‘ΉπŸ‘
Electric Field Intensity at a Point p (rc, Ο†, z)
due to Uniform Line Charge Along z-Axis
z
b
dz'
R
βŠ•βŠ•
Ξ±2
z'
Ξ±1
z
a
(rc,Ο†,z)
z
y
Ο†
x
R
rc
οΏ½οΏ½βƒ— =
𝒅𝑬
��𝑹�⃗
𝒅𝑸 𝒂
πŸ’π…πœΊπ’ π‘ΉπŸ
𝒅𝑸 = 𝝆𝒍 𝒅𝒍 = 𝝆𝒍 𝒅𝒛′
οΏ½οΏ½βƒ— = 𝒂
�𝒓𝒄 𝒓𝒄 βˆ’ 𝒂
�𝒛 (𝒛′ βˆ’ 𝒛)
𝑹
𝑹 = οΏ½π’“πŸπ’„ + (𝒛′ βˆ’ 𝒛)𝟐
οΏ½βƒ— =
𝒅𝑬
note:
οΏ½οΏ½βƒ—
�𝒓𝒄 𝒓𝒄 βˆ’ 𝒂
οΏ½ 𝒛 (𝒛 β€² βˆ’ 𝒛 )
𝒂
𝑹
�𝑹
𝒂
=
οΏ½οΏ½βƒ— =
𝑹
οΏ½π’“πŸπ’„ + (𝒛′ βˆ’ 𝒛)𝟐
�𝒓𝒄 𝒓𝒄 βˆ’ 𝒂
�𝒛 (𝒛′ βˆ’ 𝒛)οΏ½
𝝆𝒍 𝒅𝒛′ �𝒂
πŸ’π…πœΊπ’ οΏ½π’“πŸπ’„ + (𝒛′ βˆ’
πŸ‘οΏ½
𝟐
𝒛 )𝟐 οΏ½
𝒃 �𝒂
οΏ½ 𝒓𝒄 𝒓𝒄 βˆ’ 𝒂
οΏ½ 𝒛 �𝒛′ βˆ’ 𝒛��
𝝆𝒍
οΏ½οΏ½βƒ— =
𝑬
οΏ½
𝒅𝒛′
πŸ‘
πŸ’π…πœΊπ’ 𝒂
𝟐 �𝟐
β€²
οΏ½π’“πŸ
𝒄 + οΏ½ 𝒛 βˆ’ 𝒛� οΏ½
𝒃
οΏ½
𝒂
𝒅𝒙
πŸ‘οΏ½
𝟐
οΏ½π’„πŸ + π’™πŸ οΏ½
=
𝒙
𝟏�
𝟐
π’„πŸ οΏ½π’„πŸ + π’™πŸ οΏ½
𝒃
οΏ½
𝒂
𝒙𝒅𝒙
πŸ‘οΏ½
𝟐
οΏ½π’„πŸ + π’™πŸ οΏ½
=
βˆ’πŸ
οΏ½π’„πŸ + π’™πŸ οΏ½
𝟏�
𝟐
⎑
𝒃
𝝆𝒍 ⎒
𝒅𝒛′
�𝑬
οΏ½βƒ— =
οΏ½ 𝒓𝒄 𝒓𝒄 οΏ½
𝒂
⎒
πŸ‘οΏ½
πŸ’π…πœΊπ’
𝟐
𝒂
𝟐
⎒
𝟐
β€²
�𝒓𝒄 + �𝒛 βˆ’ 𝒛� οΏ½
⎣
𝒃
�𝒛′ βˆ’ 𝒛� 𝒅𝒛′
�𝒛 οΏ½
βˆ’ 𝒂
πŸ‘ οΏ½
𝒂
𝟐 �𝟐
β€²
οΏ½π’“πŸ
𝒄 + οΏ½ 𝒛 βˆ’ 𝒛� οΏ½
𝝆𝒍
οΏ½βƒ— =
οΏ½ 𝒓
𝑬
�𝒂
πŸ’π…πœΊπ’ 𝒓𝒄 𝒄
(𝒛′ βˆ’ 𝒛)
π’“πŸπ’„ [π’“πŸπ’„ + (𝒛′ βˆ’ 𝒛)𝟐 ]
𝒃
𝟏
�𝒛
+ 𝒂
𝟏� �
𝟐
[π’“πŸπ’„ + (𝒛′ βˆ’ 𝒛)𝟐 ]
𝟏�
𝟐
𝒂
�𝑬
οΏ½βƒ— =
�𝒓
𝒂
(𝒃 βˆ’ 𝒛)
(𝒂 βˆ’ 𝒛)
𝝆𝒍
βˆ’
οΏ½ 𝒄�
οΏ½
πŸ’π…πœΊπ’ 𝒓𝒄 [π’“πŸ + (𝒃 βˆ’ 𝒛)𝟐 ]𝟏�𝟐 [π’“πŸ + (𝒂 βˆ’ 𝒛)𝟐 ]𝟏�𝟐
𝒄
𝒄
𝒃
�𝒛
𝒂
𝒓𝒄
𝒓𝒄
+
βˆ’
οΏ½οΏ½
οΏ½
𝟏
𝒓𝒄 [π’“πŸ + (𝒃 βˆ’ 𝒛)𝟐 ] �𝟐 [π’“πŸ + (𝒂 βˆ’ 𝒛)𝟐 ]𝟏�𝟐
𝒄
𝒄
𝒂
𝒃
�𝒓
𝒂
�𝒛
𝝆𝒍
𝒂
οΏ½οΏ½βƒ— =
[𝒄𝒐𝒔 𝜢𝟐 βˆ’ π’„π’π’”πœΆπŸ ]οΏ½
𝑬
οΏ½ 𝒄 [π’”π’Šπ’ 𝜢𝟐 + π’”π’Šπ’ 𝜢𝟏 ] +
πŸ’π…πœΊπ’ 𝒓𝒄
𝒓𝒄
𝒂
�𝑬⃗ =
Note:
𝝆𝒍
πŸ’π…πœΊπ’ 𝒓𝒄
- For
So,
�𝒓𝒄 [π’”π’Šπ’ 𝜢𝟐 + π’”π’Šπ’ 𝜢𝟏 ] + 𝒂
�𝒛 [𝒄𝒐𝒔 𝜢𝟐 βˆ’ π’„π’π’”πœΆπŸ ]οΏ½
�𝒂
infinite line 𝜢𝟐 = 𝜢𝟏 = πŸ—πŸŽπ’
�𝑬⃗ = 𝒂
�𝒓𝒄
Projection point
Intersection point
�𝒓𝒄 𝒓𝒄
𝒂
𝝆𝒍
πŸπ…πœΊπ’ 𝒓𝒄
Electric Field Intensity at a point p (0,0,z) on the
axis of a ring charged with uniform ρL of radius a
centered at the origin and positioned in (x-y) plane
ZΜ‚
dE
(0,0, z )
R
a
Yˆ
dΦ
dl = adφ
dQ = ρ l dl = ρ l adΟ†
XΜ‚
οΏ½οΏ½βƒ— =
𝒅𝑬
��𝑹�⃗
𝒅𝑸 𝒂
πŸ’π…πœΊπ’ π‘ΉπŸ
𝒅𝑸 = 𝝆𝒍 𝒅𝒍 = 𝝆𝒍 𝒓′𝒄 𝒅𝝋′ = 𝝆𝒍 𝒂𝒅𝝋′
οΏ½οΏ½βƒ— = βˆ’π’‚
�𝒓𝒄 𝒓′𝒄 + 𝒂
�𝒛 𝒛 = βˆ’π’‚
�𝒓𝒄 𝒂 + 𝒂
�𝒛 𝒛
𝑹
𝟐
𝟐
𝟐
𝑹 = οΏ½π’“β€²πŸ
𝒄 + 𝒛 = �𝒂 + 𝒛
οΏ½βƒ— =
𝒅𝑬
�𝑬⃗ =
οΏ½οΏ½βƒ—
�𝒛 𝒛
�𝒓𝒄 𝒂 + 𝒂
βˆ’π’‚
𝑹
��𝑹�⃗ = =
𝒂
𝑹
οΏ½π’‚πŸ + π’›πŸ
�𝒓𝒄 𝒂 +
𝝆𝒍 𝒂𝒅𝝋′ οΏ½βˆ’π’‚
πŸ’π…πœΊπ’ [π’‚πŸ +
�𝒛 𝒛�
𝒂
πŸ‘οΏ½
𝟐
π’›πŸ ]
οΏ½ 𝒓𝒄 𝒂 + 𝒂
οΏ½ 𝒛 𝒛�
𝝆𝒍 𝒂 πŸπ… οΏ½βˆ’π’‚
β€²
�𝑬
οΏ½βƒ— =
οΏ½
𝒅𝝋
πŸ‘οΏ½
πŸ’π…πœΊπ’ 𝟎
𝟐
𝟐
𝟐
�𝒂 + 𝒛 οΏ½
𝝆𝒍 𝒂
πŸ’π…πœΊπ’ [π’‚πŸ +
πŸ‘
π’›πŸ ] �𝟐
πŸπ…
πŸπ…
β€²
�𝒓𝒄 𝒂 𝒅𝝋 + οΏ½ 𝒂
�𝒛 𝒛 𝒅𝝋′ οΏ½
οΏ½οΏ½ βˆ’π’‚
𝟎
𝟎
�𝒓𝒄 is not a constant unit vector and
Since, the unit vector 𝒂
it is a function of 𝝋′ , and since
So,
οΏ½ 𝒙 𝒄𝒐𝒔𝝋′ + 𝒂
οΏ½ π’š π’”π’Šπ’π‹β€²
οΏ½ 𝒓𝒄 = 𝒂
𝒂
πŸπ…
πŸπ…
βŽ‘βˆ’ οΏ½ 𝒂
�𝒙 𝒄𝒐𝒔𝝋 𝒂 𝒅𝝋 βˆ’ οΏ½ 𝒂
οΏ½π’š π’”π’Šπ’π‹β€² 𝒂 𝒅𝝋′ ⎀
𝝆𝒍 𝒂
⎒ 𝟎
βŽ₯
𝟎
�𝑬⃗ =
⎒
βŽ₯
πŸπ…
πŸ‘
πŸ’π…πœΊπ’ [π’‚πŸ + π’›πŸ ] �𝟐 ⎒
β€²
βŽ₯
�𝒛 𝒛 𝒅𝝋
+οΏ½ 𝒂
⎣
⎦
𝟎
β€²
β€²
οΏ½οΏ½βƒ— =
𝑬
𝝆𝒍 𝒂
πŸ’π…πœΊπ’ [π’‚πŸ +
οΏ½οΏ½βƒ— = 𝒂
�𝒛
𝑬
Example:
πŸπ…
�𝒛 𝒛 𝒅𝝋′
οΏ½ 𝒂
πŸ‘οΏ½
𝟐 𝟎
π’›πŸ ]
𝝆𝒍 𝒂 𝒛
πŸπœΊπ’ [π’‚πŸ +
πŸ‘οΏ½
𝟐
π’›πŸ ]
A uniform line charge of infinite extent with 𝝆𝒍 = 𝟐𝟎 𝒏π‘ͺ/π’Ž
οΏ½οΏ½βƒ— at (6,8,3) m.
lies on z-axis. Find 𝑬
Solution:
E=
ρl
rˆc
2πΡ 0 rc
rc = x 2 + y 2 = 62 + 82 = 10
20 βˆ— 10 βˆ’9 rΛ†c
∴E =
= 36rˆc V / m
2Ο€ (8.85 * 10 βˆ’2 )10 10
Electric field intensity of a surface charge:
z
dE
(0,0,z0)
ρ
R
rc
y
ds
x
οΏ½οΏ½βƒ— =
𝒅𝑬
��𝑹�⃗
𝒅𝑸 𝒂
πŸ’π…πœΊπ’ π‘ΉπŸ
𝒅𝑸 = 𝝆𝒔 𝒅𝒔′ = 𝝆𝒔 𝒓′𝒄 𝒅𝒓′𝒄 𝒅𝝋′
οΏ½οΏ½βƒ— = βˆ’π’‚
�𝒓𝒄 𝒓′𝒄 + 𝒂
�𝒛 𝒛
𝑹
𝟐
𝑹 = οΏ½π’“β€²πŸ
𝒄 +𝒛
S
οΏ½βƒ— =
𝒅𝑬
οΏ½βƒ— =
𝑬
οΏ½οΏ½βƒ—
�𝒛 𝒛
�𝒓𝒄 𝒓′𝒄 + 𝒂
βˆ’π’‚
𝑹
��𝑹�⃗ = =
𝒂
𝟐
𝑹
οΏ½π’“β€²πŸ
𝒄 +𝒛
�𝒓𝒄 𝒓′𝒄
𝝆𝒔 𝒓′𝒄 𝒅𝒓′𝒄 𝒅𝝋′ οΏ½βˆ’π’‚
β€²πŸ
𝟐
πŸ’π…πœΊπ’ �𝒓𝒄 +
β€²
β€²
𝒂 �𝒓𝒄 �𝒅𝒓𝒄
πŸπ…
�𝒓𝒄 �𝒅𝝋′
�∫𝟎
οΏ½βˆ’π’‚
∫
πŸ‘
οΏ½
𝟎
πŸ’π…πœΊπ’
𝟐
𝟐
�𝒓′𝒄 +π’›πŸ οΏ½
𝝆𝒔
�𝒛 𝒛�
+ 𝒂
πŸ‘οΏ½
𝟐
π’›πŸ οΏ½
𝒂
+ ∫𝟎
�𝒓′𝒄 �𝒅𝒓′𝒄
πŸ‘οΏ½
𝟐
𝟐
β€²
𝟐
�𝒓𝒄 +𝒛 οΏ½
πŸπ…
�𝒛 𝒛 𝒅𝝋′ οΏ½
∫𝟎 𝒂
�𝒓𝒄 is not a constant unit vector and
Since, the unit vector 𝒂
it is a function of 𝝋′ , and since
So,
οΏ½ 𝒙 𝒄𝒐𝒔𝝋′ + 𝒂
οΏ½ π’š π’”π’Šπ’π‹β€²
οΏ½ 𝒓𝒄 = 𝒂
𝒂
𝟐
𝒂
πŸπ…
𝝆𝒔
�𝒓′𝒄 �𝒅𝒓′𝒄
�𝑬⃗ =
�𝒙 𝒄𝒐𝒔𝝋′ βˆ’ 𝒂
οΏ½π’š π’”π’Šπ’π‹β€² �𝒅𝝋′
οΏ½οΏ½
οΏ½ οΏ½βˆ’π’‚
πŸ‘
οΏ½
πŸ’π…πœΊπ’ 𝟎 β€² 𝟐
�𝒓𝒄 + π’›πŸ οΏ½ 𝟐 𝟎
𝒂
πŸπ…
[𝒓′𝒄 ]𝒅𝒓′𝒄
�𝒛 𝒛 𝒅𝝋′ οΏ½
+οΏ½
οΏ½ 𝒂
πŸ‘οΏ½
𝟎 �𝒓′ 𝟐 + π’›πŸ οΏ½ 𝟐 𝟎
𝒄
Then,
𝒂
𝝆𝒔
�𝑬⃗ =
οΏ½οΏ½
πŸ’π…πœΊπ’ 𝟎
and since,
𝒂
∫𝟎
𝒓′𝒄 𝒅𝒓′𝒄
πŸ‘οΏ½
𝟐
𝟐
β€²
𝟐
�𝒓𝒄 +𝒛 οΏ½
[𝒓′𝒄 ]𝒅𝒓′𝒄
�𝒓′𝒄 𝟐
+
= οΏ½
πŸ‘οΏ½
𝟐
π’›πŸ οΏ½
βˆ’πŸ
𝟏�
𝟐
𝟐
β€²
𝟐
�𝒓𝒄 +𝒛 οΏ½
So,
�𝑬⃗ = 𝒂
�𝒛
�𝑬
οΏ½βƒ— = 𝒂
�𝒛
πŸπ…
�𝒛 𝒛 𝒅𝝋′ οΏ½
οΏ½ 𝒂
𝟎
𝒂
οΏ½ = οΏ½
𝟎
βˆ’πŸ
𝟏
[π’‚πŸ +π’›πŸ ] �𝟐
+
𝟏
𝟏
[π’›πŸ ] �𝟐
οΏ½
𝝆𝒔
βˆ’π’›
𝒛
οΏ½
+
οΏ½
𝟏�
πŸπœΊπ’
𝒛
𝟐
𝟐
𝟐
[𝒂 + 𝒛 ]
𝝆𝒔
�𝟏 βˆ’
πŸπœΊπ’
𝒛
οΏ½π’‚πŸ + π’›πŸ οΏ½
𝟏� �
𝟐
For infinite surface 𝒂 β†’ ∞
Note:
�𝑬⃗ = 𝒂
�𝒛
𝝆𝒔
πŸπœΊπ’
𝝆
οΏ½βƒ— = 𝒂
�𝒛 𝒔
For infinite surface the electric field �𝑬
𝟐𝜺
𝒐
and in direction normal to the surface and out of it.
Example:
Two infinite uniform sheets of charge π†π’”πŸ 𝒂𝒏𝒅 π†π’”πŸ located
at 𝒙 = ±πŸ as shown in figure. Find the electric field in all
regions.
Solution:
y
-1
ρ
x=1
ρ
x
S1
s2
Region 1 :
E1 =
ρs
1
2Ξ΅ 0
xˆ
,
∴ Et = E1 + E2 =
E2 =
[
ρs
2
2Ξ΅ 0
xˆ
]
1
ρ + ρ s2 xΛ†
2 Ξ΅ 0 s1
Region 2 :
E1 =
ρs
1
( βˆ’ xΛ† )
,
E2 =
2Ξ΅0
1
xˆ
∴ Et =
βˆ’Ο +ρ
s
s
1
2
2Ξ΅0
[
]
ρs
2
2Ξ΅0
( xˆ )
Region 3 :
E1 = βˆ’
ρs
1
xˆ
,
E2 = βˆ’
2Ξ΅0
1
∴ Et = βˆ’
ρ s + ρ s xΛ†
1
2
2Ξ΅0
[
]
ρs
2
2Ξ΅0
xˆ
Related documents