Download Simple Trigonometric Identities and Equations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Further Trigonometric Identities
Exercise 13.1
5.
(f)
tan 5x = tan 2x,
0 < x < 360
sin 5 x
sin 2 x
=
cos 5 x
cos 2 x
sin 5x cos 2x = cos 5x sin 2x
sin 5x cos 2x  cos 5x sin 2x = 0
sin (5x  2x) = 0

sin 3x = 0
0 < 3x < 1080
Basic angle,  = 0
3x = 0, 180, 360, 540, 720, 900, 1080
(reject 0 & 1080)
x = 60, 120, 180, 240, 300
6.
(b)
7.
(e)
Prove:
(g)
Prove: tan A + tan B =
(h)
Prove:
tan 2 x  tan 1
1
= ,
0 < x < 2
1  tan 2 x tan 1
2
1
tan (2x  1) =
1 < 2x  1 < 4  1
2
Basic angle,  = 0.4636
2x  1 = 0.4636,  + 0.4636, 2 + 0.4636, 3 + 0.4636
2x
= 1.4636, 4.6052, 7.7468, 10.888
x = 0.732, 2.30, 3.87, 5.44
sin( A  B)  sin( A  B)
= cot A
cos( A  B)  cos( A  B)
[sin A cos B  cos A sin B]  [sin A cos B  cos A sin B]
L.H.S. =
[cos A cos B  sin A sin B]  [cos A cos B  sin A sin B]
2 cos A sin B
=
 2 sin A sin B
=  cot A
= R.H.S.
sin( A  B )
cos A cos B
sin A cos B  cos A sin B
R.H.S. =
cos A cos B
sin A cos B
cos A sin B
=
+
cos A cos B
cos A cos B
= tan A + tan B
= L.H.S.
sin( A  B)
tan A  tan B
=
cos( A  B) 1  tan A tan B
L.H.S. = [sin A cos B + cos A sin B]  [cos A cos B + sin A sin B]
sin A cos B  cos A sin B
cos A cos B  sin A sin B
=

cos A cos B
cos A cos B
= [tan A + tan B]  [1 + tan A tan B]
tan A  tan B
=
= R.H.S.
1  tan A tan B
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
1
9.
(a)
(b)
(c)
12.
4
3
, sin B =  , and A & B in the same quadrant (3rd quadrant)
y
3
5
tan A  tan 45
tan (A + 45) =
3 A
1  tan A tan 45

4
4
= [ + 1]  [1  ]
4
5
3
3
= 7
cos (A  B) = cos A cos B + sin A sin B
y
3
4
4
3
= ( )( ) + ( )( )
5
5
5
5
4 B
24

=
3
25
5
sin (B  A)
= sin B cos A  cos B sin A
3
3
4
4
= ( )( )  ( )( )
5
5
5
5
7
=
25
Given: tan A =
x
x
Show: sin (A + B) sin (A  B) = sin2 A  sin2 B
L.H.S. = [sin A cos B + cos A sin B]  [sin A cos B  cos A sin B]
= (sin A cos B)2  (cos A sin B)2
= sin2 A (1  sin2 B)  (1  sin2 A)sin2 B
= sin2 A  sin2 A sin2 B  sin2 B + sin2 Asin2 B
= sin2 A  sin2 B
= R.H.S.
(a)
sin2 3x = sin2 x,
0  x  180
sin2 3x  sin2 x = 0
sin (3x + x) sin (3x  x) = 0
sin 4x sin 2x = 0
0  2x  360 or 0  4x  720
sin 4x = 0
or
sin 2x = 0
Basic angle,  = 0
Basic angle,  = 0
4x = 0, 180, 360, 540, 720
2x = 0, 180, 360
x = 0, 45, 90, 135, 180
x = 0, 90, 180
x = 0, 45, 90, 135, 180
(b)
Show: sin 15 sin 75 =
1
4
L.H.S. = sin 75 sin 15
= sin (45 + 30) sin (45  30)
= sin2 45  sin2 30
1
1 2
=(
)  ( )2
2
2
1
1
1
= 
=
= R.H.S.
2
4
4
 End of Ex 13.1 
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
2
Exercise 13.2
2.
(e)
cos 2y  1 = 3sin y,
(1  2sin2 y)  1 = 3sin y
2sin2 y + 3sin y = 0
sin y(2sin y + 3) = 0
0 < y < 360
sin y = 0
sin y = 
Basic angle,  = 0
y = 0, 180, 360
y = 180
3.
or
3
(No solution as 1  sin y  1)
2
(reject 0 & 360, since 0 < y < 360)
(f)
(sin x  cos x)2 = 2,
0 < x < 360
sin2 x + cos2 x  2sin x cos x = 2
1  sin 2x = 2
sin 2x = 1
0 < 2x < 720
Basic angle,  = 90
2x = 180 + 90, 360  90, 540 + 90, 720  90
x = 135, 315
(b)
5sin x cos2 x + 2cos x = 0,
0  x  2, or 0  2x  4
cos x(5sin x cos x + 2) = 0
1
4
cos x = 0
or
5( sin 2x) + 2 = 0, i.e. sin 2x = 
2
5

Basic angle,  =
Basic angle,  = 0.9273
2


x = , 2 
2x =  + 0.9273, 2  0.9273, 3 + 0.9273, 4  0.9273
2
2
 3
x = ,
, 2.03, 2.68, 5.18, 5.82
2 2
(e)
2 tan 2 tan x = 1  tan2 x,
0  x  2, so 0  2x  4
2 tan x
tan 2(
)=1
1  tan 2 x
1
tan 2x =
= 0.4577
tan 2
Basic angle,  = 0.4292
2x =   0.4292, 2  0.4292, 3  0.4292, 4  0.4292
x = 1.36, 2.93, 4.50, 6.07
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
3
(f)
tan 2x = 3tan x,
2 tan x
= 3tan x
1  tan 2 x
0  x  2

2tan x = 3tan x(1  tan2 x)
2tan x  3tan x(1  tan2 x) = 0
tan x [2  3(1  tan2 x)] = 0
tan x(3tan2 x  1) = 0
tan x = 0
tan x = 
or
1
3
Basic angle,  = 0
Basic angle,  =

6




,   ,  + , 2 
6
6
6
6
 5 7 11
x = 0, , 2, ,
,
,
6
6
6 6
x = 0, , 2
6.
x=
Given: cot  = k and  is acute.
1
cot  = k

tan  =
k
(a)
(b)
(d)
sin 2 = 2sin  cos  = 2(
k 2 1
1
1

2k
= 2
k 1
sec 2 = 1  cos 2
k
)(
)
k
k2 1
k2 1
cot ( + 45) = 1  tan ( + 45)
(c)
tan   tan 45
=1
= 1  (1  2sin2 )
1  tan  tan 45
1
1
1
=1 k
= 1  [1  2( 2
)]
1
k

1
1
k
k2 1 2
1 k
k 1
=1[

]
=1
k
k
k2 1
k2 1
1 k
k
=1[

]
= 2
k
k 1
k 1
k 1
k 1
=1
=
k 1
k 1
tan   tan 2
2 tan 
tan 2 =
then, tan 3 =
2
1  tan  tan 2
1  tan 
1
1
1
1
2k
2k
= 2( )  [1  2 ]
=( + 2
)  (1 
 2
)
k
k
k
k
k 1
k 1
k (k 2  1)  2k
k 2 1
2
k 2  1  2k 2
= 
=

k
k2
k (k 2  1)
k (k 2  1)
=
k2
2
 2
k
k 1
=
k (k 2  1)
3k 3  1

k 3  3k
k (k 2  1)
=
2k
2
k 1
=
3k 3  1
k (k 2  3)
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
4
7.
(e)
(f)
9.
sin A
1
= tan A
1  cos A
2
A
A
A
A
2 sin cos
2 sin cos
2
2
2
2
L.H.S. =
=
A
A
1  [2 cos 2  1]
2 cos 2
2
2
A
sin
1
2
=
= tan A
A
2
cos
2
Prove:
= R.H.S.
1  tan 2 A
= sec 2A
1  tan 2 A
sin 2 A
sin 2 A
L.H.S. = [1 +
]

[1

]
cos 2 A
cos 2 A
cos 2 A  sin 2 A
cos 2 A  sin 2 A
=

cos 2 A
cos 2 A
cos 2 A
1
=

cos 2 A cos 2 A
1
=
= sec 2A
= R.H.S.
cos 2 A
Prove:
Given: a = cos x + sin x and b = cos x  sin x
(a)
Prove: cos 2x = ab
L.H.S. = cos2 x  sin2 x
= (cos x + sin x)(cos x  sin x)
= ab
= R.H.S.
(b)
Prove: sin 2x = a2  1
R.H.S. = (cos x + sin x)2  1
= cos2 x + sin2 x + 2sin x cos x  1
= 1 + sin 2x  1
= L.H.S.
(c)
Prove: a2 + b2 = 2
R.H.S. = (cos x + sin x)2 + (cos x  sin x)2
= (cos2 x + sin2 x + 2sin x cos x) + (cos2 x + sin2 x  2sin x cos x)
=1+1
=2
= L.H.S.
 End of Ex 13.2 
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
5
Exercise 13.3
3.
(d)
3  7cos  + 24sin ,
0 <  < 360
Let 24sin   7cos  = Rsin (  )
Then R =
24 2  (7) 2 = 25
and
7
24
so  = 16.26
tan  =
Since 25  25sin (  16.26)  25

3  25  3  7cos  + 24sin   25 + 3
Max. value = 28,
when sin (  16.26) = 1

 = 90 + 16.26 = 106.3
Min. value = 22,
when sin (  16.26) = 1

 = 270 + 16.26 = 286.3
4.
(d)
sin x + 2cos x = 2 ,
Let sin x + 2cos x = Rsin (x + )
0 < x < 360
Then R = 12  2 2 =
5
and
sin x + 2cos x = 2
5 sin (x + 63.43) =
2
2
=2
1
so  = 63.43
tan  =
2
63.43 < x + 63.43 < 423.23
5
Basic angle,  = 39.23
x + 63.43 = 180  39.23, 360 + 39.23
x = 77.3, 335.8
sin (x + 63.43) =
(f)
 cos x + e sin x = 2,
0 < x < 360
Let  cos x + e sin x = Rcos (x  )
Then R =
 2  e 2 = 4.154
 cos x + e sin x = 2
4.154cos (x  40.87) = 2
2
cos (x  40.87) =
4.154
Basic angle,  = 61.22
x  40.87 = 61.22, 360  61.22
x = 102.1, 339.7
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
and
tan  =
e

so  = 40.87
40.87 < x  40.87 < 400.87
6
5.
(b)
2cot x = 3 + 2cosec x,
2 cos x
2
=3+
sin x
sin x
3 sin x  2
2 cos x
=
sin x
sin x
2cos x = 3sin x + 2
2cos x  3sin x = 2
Let 2cos x  3sin x = Rcos (x + )
Then R =
(sin x  0)
2 2  (3) 2 = 13
2cos x  3sin x = 2
13 cos (x + 56.31) = 2
2
cos (x + 56.31) =
13
Basic angle,  = 56.31
x + 56.31 = 56.31, 360  56.31
x = 247.4
8.
0 < x < 360
and
tan  =
so  = 56.31
56.31 < x + 56.31 < 416.31
Given: ORQ = , so
RQX = 90   and PQX = 
PX
In PQX, sin  =
, so PX = 2sin 
2
YR
In QRY, cos  =
, so YR = 8cos 
8
So OR = OY + YR
= PX + YR
= (2sin  + 8cos ) cm
(a)
Let 2sin  + 8cos  = Rsin ( + )
Then R =
(b)
2 2  82 =
68
3
2
and
Q
2 cm
P

X
90  
8 cm
O
Y

R
8
=4
2
so  = 75.96
tan  =
Since  68  68 sin ( + 75.96)  68

 68  OR  68
For max. OR, sin ( + 75.96) = 1

 = 90  75.96 = 14.0
68 sin ( + 75.96) = 6
OR = 6

6
sin ( + 75.96) =
Note that:
68
Basic angle,  = 46.69
so
 + 75.96 = 180  46.69
 = 57.4
x > 0
x + 75.96 > 75.96
 End of Ex 13.3 
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
7
Exercise 13.4
2.
(f)
sin
11
5
 sin
12
12
= 2cos [(
11
5
11
5
+
)  2] sin [(

)  2]
12
12
12
12
2

sin
3
4
1
1
= 2( )(
)
2
2
= 2cos
3.
4.
=
2
2
(e)
cos 3x  2sin 2x = cos x,
0  x  180
cos 3x  cos x  2sin 2x = 0
3x  x
3x  x
2sin
sin
 2sin 2x = 0
2
2
2sin 2x sin x  2sin 2x = 0
2sin 2x (sin x + 1) = 0
sin 2x = 0
or
sin x = 1
Basic angle,  = 0
Basic angle,  = 90
2x = 0, 180, 360
x = 180 + 90, 360  90
x = 0, 90, 180
= 270 (rejected since 0  x  180)
x = 0, 90, 180
(f)
cos 3x  cos x = sin 3x  sin x,
0  x  180
3x  x
3x  x
3x  x
3x  x
2sin
sin
= 2cos
sin
2
2
2
2
2sin 2x sin x = 2cos 2x sin x
2cos 2x sin x + 2sin 2x sinx = 0
2sin x(cos 2x + sin 2x) = 0
sin x = 0
or
sin 2x = cos 2x

tan 2x = 1
Basic angle,  = 0
Basic angle,  = 45
x = 0, 180
2x = 180  45, 360  45
x = 0, 67.5, 157.5, 180
(d)
sin 4x + sin 2x + cos 4x = cos 2x,
0x
(sin 4x + sin 2x) + (cos 4x + cos 2x) = 0
4x  2x
4x  2x
4x  2x
4x  2x
2sin
cos
+ 2cos
cos
=0
2
2
2
2
2sin 3x cos x + 2cos 3x cos x = 0
2cos x(sin 3x + cos 3x) = 0
cos x = 0
or
sin 3x = cos 3x

tan 3x = 1


Basic angle,  =
Basic angle,  =
2
4




x=
3x =   , 2  , 3 
2
4
4
4
  7 11
x = , ,
,
2 4 12 12
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
8
5.
6.
cos 6  cos 2
= tan 4 tan 2
cos 6  cos 2
6  2
6  2
6  2
6  2
L.H.S. = [2sin
sin
]  [2cos
cos
]
2
2
2
2
 2 sin 4 sin 2
=
2 cos 4 cos 2
= tan 4 tan 2
= R.H.S.
(c)
Prove:
(d)
Prove:
(f)
Prove: cos2 A  cos2 B = sin (B  A) sin (B + A)
L.H.S. = cos2 A  cos2 B
= (cos A + cos B)(cos A  cos B)
A B
A B
A B
A B
= (2cos
cos
)(2sin
sin
)
2
2
2
2
A B
A B
A B
A B
= (2sin
cos
)(2sin
cos
)
2
2
2
2
A B
A B
= sin 2(
) sin 2(
)
2
2
= sin [(B  A)] sin (A + B)
= sin (B  A) sin (B + A)
= R.H.S.
sin 6  cos 4  sin 2
= cot 4
cos 6  sin 4  cos 2
sin 6  sin 2  cos 4
L.H.S. =
cos 6  cos 2  sin 4
6  2
6  2
6  2
6  2
= [2cos
sin
+ cos 4]  [2sin
sin
 sin 4]
2
2
2
2
= [2cos 4 sin 2 + cos 4]  [2sin 4 sin 2  sin 4]
cos 4 (2 sin 2  1)
=
 sin 4 (2 sin 2  1)
= cot 4
= R.H.S.
1
4 x  3x
4 x  3x
[2sin
cos
]
2
2
2
7x
x
= sin
cos
2
2
7
1
1
a = 1, b =
= 3 and c = .
2
2
2
1
1
5x  4x
5x  4x
(sin 5x  sin 4x)
= [2cos
sin
]
2
2
2
2
9x
x
= cos
sin
2
2
1
(sin 4x + sin 3x)
2
=
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
9
7x
x
9x
x
cos
+ cos
sin = sin 4x cos x
2
2
2
2
1
1
L.H.S. = (sin 4x + sin 3x) + (sin 5x  sin 4x)
2
2
1
= (sin 5x + sin 3x)
2
1
5 x  3x
5 x  3x
= [2sin
cos
]
2
2
2
= sin 4x cos x
= R.H.S.
Show: sin
 End of Ex 13.4 
Ex 13: Further Trigonometric Identities
Prepared by Mr Ang KS
10
Related documents