Download Team 2

Document related concepts
no text concepts found
Transcript
Capstone Design
Team #2
Team Members
•
•
•
•
•
Eenas Omari
Ayodeji Opadeyi
Kevin Erickson
Brian Felsmann
Rick Ryer
•
•
•
•
•
BSEE
BSEE, BSCS
BSEE
BSEE
BSEE
2
Millennium Infrared
Sound System
• Project Description:
– A wireless audio system using infrared technology
– Primarily designed for Home Theater Systems to
eliminate speaker wires
– Accepts any analog audio input and transmits the
signal to the wireless amplifiers. Uses owner’s
already existing speakers.
– Not proprietary to any audio manufactures equipment
3
Millennium Infrared
Sound System
• Benefits of Product:
– A plug-n-play system compatible with existing audio
receiver and speakers
– Eliminates speaker wires around the living room
– Does not use RF technology which could have
inference from other popular home electronic devices
(telephones, Wi-Fi, Radio)
– Fast easy installation
4
Millennium Infrared
Sound System
• Targeted Market of Product:
– Consumer Electronics market
– Marketed in the United States and Canada
• Targeted Demographic
– 18 – 30 year olds with Home Theater Systems
• MSRP
– $100 -- $125
5
Millennium Infrared
Sound System
• Project Selection:
– Reasonable low cost project
– Unique product
– Similar, more expensive, products using RF
technology
– An interest from team members
6
Capstone Design
Team #2
Expertise and Experience
•
Eenas Omari
Expertise: Electronics (Filters), Circuit design, RF
Control systems, Digital Design, Communications.
•
Ayodeji Opadeyi
Expertise: EMC, Programming (C++, Java, Assembly),
Powers, Circuit design, RF
Experience: 1 year Co-op at Harley Davidson
•
Kevin Erickson
Expertise: Analog/Digital Design, Fiber Optics,
Programming, AC Generators
Experience: 2 years Co-op at Harley Davidson
•
Brian Felsmann
Expertise: Communication systems, Fiber Optics,
Programming, Digital design.
Experience: 1 year internship at Johnson Controls
•
Rick Ryer
Expertise: Embedded Systems, Microprocessors,
Digital Circuits, Assembly Programming.
Experience: 4 summer internships at GE medical.
7
Capstone Design
Team #2
• Available Resources:
– 1200 –1600 Man-hours
• 15-20 hours/week per team member
• Includes lab time, periodic meetings, and personal time
– $500-$750 for material and prototyping
• $100-$125 per team member
• Actual Resources:
– 1000 Man-hours
– $250 for materials and prototyping
8
MIRSS
Performance Requirements
Power Inputs
• AC Power (U.S. and Canada) 102 – 132 V @ 57-63 Hz
• Short circuit protection for transmitter and receiver
• ESD Protection
Electrical Interfaces
• Analog input from audio receiver
• 60 watt analog output to speakers
• Analog input is digitalized and sent via infrared emitter and
photodiode and converted back to an analog signal
9
MIRSS
Performance Requirements
ADC & DAC:
• 16 bit resolution conversion
• 44.1 kHz Sampling frequency (minimum)
• Total propagation delay from input to output < 30 μs
Amplifier Requirements:
• 60 Watts peak power
• 97 dB SNR
• 0.0015% THD+N (Total Harmonic Distortion + Noise)
• 100 dB CMRR
10
MIRSS
Standard Requirements
Temperature Ranges
• Operating Temperatures: 10°C – 40°C
• Storage Temperatures: -10°C –70°C
Humidity Ranges
• Operating humidity: 20% – 85%
• Storage humidity: 10% – 95%
Product Life
• 5 years
• 30 day warranty
11
MIRSS
Standard Requirements
Product Dimensions
• Transmitter, 6” W x 2” H x 6” L
• 2 PCB Boards for Transmitter
– Total Area: 195 cm2
• Receiver, 9” W x 3” H x 9” L
• 2 PCB Boards for Receiver
– Total Area: 466 cm2 (per receiver)
Safety Requirements
• Primary Safety Standards
– UL 6500, IEC 61603, IEC 61558
• EMC Safety Standards
– INC61204, IEC 55103, IEC61000
12
MIRSS
Safety Requirements Overview
• Primary Safety Standards
– UL 6500: Audio/Video and Musical Instrument Apparatus for
Household, Commercial, and Similar General Use
– IEC 61603: Transmission of audio and related signals using
infra-red radiation
– IEC 61558: Electrical, Thermal, and Mechanical safety of
portable transformers
• EMC Safety Standards
– IEC 61204: Safety and EM requirements of switching power
supplies up to 600 V
– IEC 61000: Specifies compliance with interference from EM
sources and limits EM interference that can be emitted
13
MIRSS
Transmitter Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Power Supply
Analog
ADC
IR Transmitter
Digital
Transmitter
Infrared
14
MIRSS
Receiver Block Diagram
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
Analog
DAC
IR Receiver
Digital
Analog
Channel to
Speaker
15
MIRSS
Complete Product Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
16
MIRSS
Block Allocations
ADC
Market
Estimated Total Market Size
Estimated Annual Volume
Minimum List Price
Maximum Product Mat Cost
Maximum Product Mfg Cost
Estimated Annual Contribution
Market Geography
Market Demography
Market Competitors
Market Industry
Power
Energy Source 1(Transmitter)
Energy Source 2 (Receiver)
Energy Source 3
Source 1 Connection (Transmitter)
Source 2 Connection (Reciever)
Source 3 Connection
Min Oper Voltage Range Source 1
Min Oper Voltage Range Source 2
Min Oper Voltage Range Source 3
Max Total Power (AC or DC non-Batt)
Consumption Source 1
Consumption Source 2
Consumption Source 3
$5,000,000.00
1000000
$100.00
$70.00
$20.00
$10,000,000.00
102.00
102.00
102.00
Mechanical
Max Product Volume
Max Shipping Container Volume
Max Product Mass
Max Number of Printed Circuit Bds
Max Total PCB Area
Energy Source 1 Connector
Energy Source 2 Connector
Energy Source 3 Connector
Maximum Shock Force
Maximum Shock Repetitions
Package Moisture Resistance
Environmental
Min Oper Ambient Temp Range
Min Oper Ambient Humidity Range
Min Oper Altitude Range
Min Storage Ambient Temp Range
Min Storage Ambient Humidity Range
Min Storage/Shipping Altitude Range
Max Storage Duration
List
List
List
List
List
List
Volts
Volts
Volts
Watts
5.0
1
Life Cycle
Estimated Max Production Lifetime
Service Strategy
Product Life, Reliability in MTBF
Full Warranty Period
Product Disposal
CM3
CM3
Kgs
#
CM2
List
List
List
G's
#
List
o
C
40
98
%Rh
4000 Mtrs, ATM
o
C
50
98
%Rh
4000
Meters
2
Years
Safety
Primary Safety Standards
Primary EMC Standards
Manufacturing
Maximum Total Parts Count (Product)
Maximum Unique Parts Count (Product)
Maximum Parts & Material Cost
Maximum Mfg Assembly/Test Cost
List Source of Info
No
Estimate your annual production volume
Associate
Estimate the minimum selling price
No
Estimate the cost of all parts for production
Yes
Estimate the cost of all Mfg operations
Yes
Calculated
No
North America (US and Canada)
Associate
16+, General population
Associate
Sony, samsung, Jensen,terk,Kenwood..etc
No
Consumer Electronics
No
AC
AC
AC
Permanent
Permanent
Permanent
132.00
132.00
132.00
165.000
All Sources Total Power
5.000 Watts,mAH mAHrs for Batteries, Watts for all other
160.000 Watts,mAH mAHrs for Batteries, Watts for all other
0.000 Watts,mAH mAHrs for Batteries, Watts for all other
5162
6000
5
5
1277
10
2
0
0
2
0
$
#
$
$
$
$
List
List
List
List
List
List
200
10
$70.00
$20.00
5
5
0.25
#
#
$
$
Years
List
Years
Years
List
Total for all design blocks
Assume single container for all parts
Total for all boards
Type A
Type A
dropped to carpet or hardwood floor
5 drops of 3m
Sealed
Relative Humidity, Non-condensing
Or Pressure Range in ATM
Relative Humidity, Non-condensing
Or Pressure Range in ATM
UL 6500, EN 61603, IEC 61558
EN61204, EN 55103, EN61000
All parts including screws, fabs, cables
Total unique part numbers in assembly
From Market Reqs Section
From Market Reqs Section
Dispose or Repair
Landfill
Associate
Associate
Associate
Associate
Associate
Associate
Associate
Associate
Associate
Yes
Yes
Yes
Yes
IR TX
IR RX
DAC
Amplifier TX Power
RX Power
TX Protection
Enter a % allocation 0-100 or "XX" for association
XX
XX
XX
XX
5
2.5
2.5
5
7.14%
3.57%
3.57%
7.14%
11.11% 11.11% 11.11% 11.11%
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
10
5.00%
25.00%
XX
20
Misc.
Total %
XX
5
5
14.29%
11.11%
28.57%
11.11%
7.14%
11.11%
7.14%
11.11%
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
0.00%
0.00%
100.00%
100.00%
0.00%
0.00%
0.00%
5.50%
100.00%
100.00%
XX
XX
0.50%
25.00%
XX
XX
XX
15
21.43%
11.11%
RX Protection
XX
XX
0.00%
0.00%
0.00%
1.25%
0.63%
95.00%
Yes
Yes
Yes
Associate
Yes
Associate
Associate
Associate
Associate
Associate
Associate
2.00%
2.00%
2.00%
XX
2.00%
2.00%
2.00%
2.00%
XX
2.00%
2.00%
2.00%
2.00%
XX
2.00%
2.00%
2.00%
2.00%
XX
2.00%
20.00%
20.00%
20.00%
XX
20.00%
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
Associate
Associate
Associate
Associate
Associate
Associate
Associate
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
Associate
Associate
XX
XX
XX
XX
Yes
Yes
Yes
Yes
2.00%
11.11%
7.14%
11.11%
Associate
Associate
Yes
Associate
Associate
XX
XX
1.00%
XX
XX
XX
XX
XX
XX
XX
0.00%
0.00%
0.00%
50.00%
0.00%
3.13%
50.00%
50.00%
50.00%
XX
50.00%
XX
XX
XX
XX
XX
XX
1.00%
1.00%
1.00%
XX
1.00%
1.00%
1.00%
1.00%
XX
1.00%
XX
XX
XX
20.00%
20.00%
20.00%
XX
20.00%
XX
XX
XX
XX
XX
XX
100.00%
100.00%
100.00%
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
2.00%
11.11%
3.57%
11.11%
2.00%
11.11%
3.57%
11.11%
2.00%
11.11%
7.14%
11.11%
20.00%
11.11%
21.43%
11.11%
20.00%
11.11%
14.29%
11.11%
50.00%
11.11%
28.57%
11.11%
1.00%
11.11%
7.14%
11.11%
1.00%
11.11%
7.14%
11.11%
100.00%
100.00%
100.00%
100.00%
XX
XX
3.50%
XX
XX
XX
XX
3.50%
XX
XX
XX
XX
1.00%
XX
XX
XX
XX
65.00%
XX
XX
XX
XX
10.00%
XX
XX
XX
XX
10.00%
XX
XX
XX
XX
3.00%
XX
XX
XX
XX
3.00%
XX
XX
100.00%
100.00%
17
MIRSS
Transmitter Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Eenas Omari
18
Transmitter Power Supply
• Block Description
– An electrical device that transforms the
standard wall outlet electricity (AC) into
lower voltages (DC)
– Will supply voltage to both the Analog to
Digital converter (ADC) and the Infrared
transmitter (IR Transmitter).
Block Owner: Eenas Omari
19
Transmitter Power Supply
Standard Requirements
Temperature:
- Operating Temperature: 10 – 60 oC.
- Storage Temperature: 10 – 40 oC.
Humidity:
- Operating Humidity: 20– 85 %Rh.
- Storage Humidity: 10 – 95 %Rh
Block Owner: Eenas Omari
20
Transmitter Power Supply
Standard Requirements
• Mechanical:
- Max PCB Area:103.23 cm2
- Max Volume:524.41 cm3.
- Max Mass: 0.907 kg
- # PCB: 1.
- # Connectors : 1
• Power:
Voltage Range (AC): 102 V < Vin < 132 V
• Life Cycle:
- Life : 5 years
- Reliability : 5 years.
- Disposal : Recycle.
Block Owner: Eenas Omari
21
Transmitter Power Supply
Performance Requirements
• User indicator:
- Input Indicator: Bright light, Full Darkness.
- Indicator: Power on Red LED.
• Operational Modes:
- On/Off
• Electrical Interfaces:
- Input Voltage Range (AC) : 102 V < Vin < 132 V
- Output Voltage Ranges: ± 4.75 V < Vout < ± 5.25 V
± 14.25 <Vout < ± 15.75 V
- Frequency Range: 57 < f < 63 Hz
Block Owner: Eenas Omari
22
MIRSS-2K5
Block Diagram Power Distribution
Analog Channels
from Receiver
(Left & Right Rear)
+5 volts
Transmitter
Transmitter
Power Supply
ADC
Analog
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
+/-5,15 volts
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Eenas Omari
23
Transmitter Power Supply
Block Diagram
Input
120 volts AC
AC/DC
Conversion
Isolation
Outputs
Voltage
Regulator
(DC/DC)
+5 Volts
Voltage
Regulator
(DC/DC)
+15 Volts
Voltage
Regulator
(DC/DC)
+5 Volts
Voltage
Regulator
(DC/DC)
-5 Volts
Voltage
Regulator
(DC/DC)
-15 Volts
Rectifier
Positive voltage
regulator.
Negative voltage
regulator
Block Owner: Eenas Omari
AC/DC
Conversion
24
3
V IN
1
+5 Volts
2
V OUT
U1
A DJ
C1
R1
C2
LM317/TO22 0
3
1
V IN
A DJ
+5 Volts
2
V OUT
U5
R2
R3
C3
C4
LM317/TO22 0
3
R4
V IN
1
V OUT
A DJ
2
+15 Volts
U2
LM317/TO22 0
R5
C6
C5
R6
T2
1
5
V1
120V ac
0V dc
6
4
D1
-
+
R7
8
DIODE BRIDGE
C
TRNSFMR 166J
LM337/TO22 0
C7
R8
C
1
2
A DJ
U3
V IN
V OUT
C8
-5 Volts
3
R9
LM337/TO22 0
C9
R10
1
2
Block Owner: Eenas Omari
A DJ
U4
V IN
V OUT
3
C10
-15 Volts
25
Transmitter Power Supply
Transformer Selection
115 volts at 50/60 Hz
series connection 48V C.T @ 0.75A.
Which is equivalent to :
120 volts at 50/60 Hz
series connection 50V C.T @ 0.75A.
Block Owner: Eenas Omari
26
Transmitter Power Supply
Transformer Analysis
** DC Voltage (After Filtering)
18V V  55V (This condition should be met).
V  (V 1.4) / 2
V  2  251.4  34V .... Positive and Negative.
i 1.8i
i  0.75/1.8  0.417A.
DC
AC
DC
DC
AC
DC
DC
* * Worst case analysis for input AC voltage :
102V V 132V .....Primary.
21.25V V  27.5V ....Secondary
29V V  37.5V (Satisfies the conditions).
AC
AC
DC
** Filter Capacitor Calculation:
C  (1L / V )  6 103
C  (0.417 A / 0.5vpp)  6 10 3  0.005004 F
C  5004F  Selected 4700F
Block Owner: Eenas Omari
27
Transmitter Power Supply
Voltage Regulators
• Finding the resistance values for the voltage
regulators use the following equations:
VDC ( out)  1.25V (1  ( R 2 / R1))  IADJ  ( R 2)
For the negative voltage.
 VDC ( out)  1.25V (1  ( R 5 / 120))  IADJ  ( R 2)
The adjustable current could be neglected
because it’s small (micro Amps).
Block Owner: Eenas Omari
28
Transmitter Power Supply
Positive Voltage Regulators
Resistance ratios:
+5 volts DC:
R2/R1 = 3
R1 = 180 Ω
R2 = 560 Ω
Power Dissipation:
200
+15 volts DC:
R4/R3 = 11
R3 = 220Ω
R4 = 2.4kΩ
Block Owner: Eenas Omari
29
T1
1
5
V1
V1
6
V IN
V OUT
2
Transmitter Power Supply
Negative Voltage Regulators
4 T1
8
1
5
TRNSFMR 166J
1
A DJ
D1
-
+
DIODE BRIDGE
D1
C
4700u
-
+
8
DIODE BRIDGE
C
4700u
C3
1u
R4
22k
+15 Volts
U2
3 LM317/TO22 0
2
2k
V IN
V OUT
R3
1
U2
A DJ
C3
1u
6
4
3
R2
3k
LM317/TO22 0
C4
10u
+15 Volts
C4
10u
2k
R3
C
4700u
TRNSFMR 166J
R4
22k
C
4700u
R5
360
**R6, , R8 is selected to be 120Ω:
LM337/TO22 0
C5
1u
1
-5 volts DC:
D2
R5 = 3 X 120Ω = 360Ω
2
Par t Referen ce
C5
1u
1
2
LED
D2
-15 volts DC:
R7 = 11 X 120Ω = 1.3LEDkΩ
C6
10u
U3
V IN
V OUT
LM337/TO22 0
A DJ
U3
V IN
V OUT
-5 Volts
3
R6
120
3
R7
1.32k
C6
10u
-5 Volts
Par t Referen ce
LM337/TO22 0
C7
1u
1
2
C7
1u
1
2
Block Owner: Eenas Omari
A DJ
R6
R5
120
360
A DJ
R8
R7
120
1.32k
C8
10u
U4
V IN
V OUT
LM337/TO22 0
A DJ
U4
V IN
V OUT
-15 Volts
3
R8
120
3
C8
10u
-15 Volts
30
• Summary of Worst Case Analysis:
Vout(max)  1.25(1  RB (max) / RA(min))
Vout(min)  1.25(1  RB (min) / RA(max) )
VDC  5.1volts.
Vout(min)  5.06volts.
VDC  5volts.
Vout (max)  5.08volts.
P (max) Dissipation  2.25watts
Vout (min)  4.93volts.
Vout(max)  5.22volts.
VDC  15volts.
Vout(max)  15.16volts.
Vout(min)  14.62volts.
P (max) Dissipation  6.75watts
Block Owner: Eenas Omari
VDC  15volts.
Vout(max)  15.07volts.
Vout(min)  14.52volts.
31
Transmitter Power Supply
Component Selection
Components
Symbol
Value
Resistors
R1,R3
R2,R4
R5
R6
R7
R8,R10
R9
180Ω
560Ω
220Ω
2.4kΩ
360Ω
120Ω
1.3kΩ
Capacitors
C,C
C1,C3,C5,C7,C9
C2,C4,C6,C8,C10
4700uF (Electrolytic)
1.0 uF (tantalum)
10 uF (alum
electrolytic)
Block Owner: Eenas Omari
32
3
V IN
1
U1
A DJ
C1 1u
R1
180
LM317/TO22 0
3
1
C3 1u
V IN
A DJ
C2 10u
+5 Volts
2
V OUT
+5 Volts
2
V OUT
U5
R2
560
R3
180
LM317/TO22 0
C4
3
R4
560
V IN
1
V OUT
A DJ
2
+15 Volts
U2
LM317/TO22 0
R5
C6 10u
C5 1u
220
R6
2.4k
T2
1
5
V1
120V ac
0V dc
6
4
D1
-
+
R7
360
8
DIODE BRIDGE
C 4 700u
TRNSFMR 166J
LM337/TO22 0
C7 1u
C 4 700u
1
2
R8
120
A DJ
U3
V IN
V OUT
C8 10u
-5 Volts
3
R9
1.3k
LM337/TO22 0
C9 1u
1
2
Block Owner: Eenas Omari
R10
120
A DJ
U4
V IN
V OUT
3
C10 10u
-15 Volts
33
Transmitter Power Supply
Transformer Simulation
Block Owner: Eenas Omari
34
Transmitter Power Supply
Simulation
+24 volts
40V
0V
-40V
0s
V(Vp)
20ms
V(Vn)
40ms
60ms
80ms
100ms
Time
-24 volts
Block Owner: Eenas Omari
35
Output Voltage
Transmitter Power Supply
5V Regulator Simulation
Input Voltage
Block Owner: Eenas Omari
36
Output Voltage
Transmitter Power Supply
15V Regulator Simulation
Input Voltage
Block Owner: Eenas Omari
37
Transmitter Power Supply
Verification
Primary AC Input Voltage
Secondary AC Input Voltage
Block Owner: Eenas Omari
38
Transmitter Power Supply
Verification
DC Voltage After
Bridge Diodes.
0.143 V Ripple
78.0 Volts
Block Owner: Eenas Omari
39
Transmitter Power Supply
Verification
Positive DC Voltage After
Rectification
-39.0 Volts
0.109 V Ripple
0.143 V Ripple
Negative DC Voltage After
Rectification
0.099 V Ripple 39.0 Volts
Block Owner: Eenas Omari
40
Transmitter Power Supply
Verification
5V Regulator Output Voltage
.293 V ripple
-5 V Regulator Output Voltage
0.109 V ripple
Block Owner: Eenas Omari
41
Transmitter Power Supply
Verification
15V Regulator Output Voltage
0.126V ripple
-15 V Regulator Output Voltage
0.113 V ripple
Block Owner: Eenas Omari
42
Transmitter Power Supply
Reliability
• Block MTBF: 51.1 Years
• Block FIT: 2233 per billion hours
• Dominant Parts for the unreliability are:
- Electrolytic Capacitors
- LED.
Block Owner: Eenas Omari
43
Transmitter Power Supply
Obsolescence Analysis
µ + 2.5σ - P
Yageo (CFR-25JB-120R)
Primary Attributes:
Carbon Resistor
µ + 3.5σ - P
-4.25
4.25
(Panasonic – ECG)EEA-FC1E100
Primary Attributes:
Tantalum, Electrolytic
Capacitors
4.5
14.5
Erlich Ind (EID-164J48)
Primary Attributes:
15.5
21.5
Transformer
Fairchild,National Semiconductor(LM337T,LM317MDT)
Primary Attributes:
Voltage Regulator
15
Secondary Attributes: Technology (Bipolar)
0.75
Package (SOT)
5.75
Obsolescence Window
21.25
13.25
12.25
(0.75,12.25)
Present Year (P) = 2005.5
Block Owner: Eenas Omari
44
Obsolescence analysis continued…
µ + 2.5σ - P
Diodes Inc(1N5404-T)
Primary Attributes:
Diodes, LED
25.25
Secondary Attributes: Technology (CMOS)
35.75
Package (MCM)
7.5
Voltage (5v+)
0.25
Obsolescence Window
µ + 3.5σ - P
36.35
48.25
13.1
5.55
(0.25,5.55)
Present Year (P) = 2005.5
Block Owner: Eenas Omari
45
Transmitter Power Supply
Sustainability
• Top three worst case parts are:
- Carbon Resistors
- Diodes and LEDs.
- Voltage Regulators
• Carbon resistors are the worst (negative sustainability).
• Possible actions would be using any other type of
resistors; such as metal film, voltage regulators that uses
CMOS technology would have a better life parameters.
Block Owner: Eenas Omari
46
ADC
Performance Requirements
Power Inputs
– DC Power ±4.75V – ±5.25 V
– DC Power ±14.25V – ±15.75 V
Electrical Interfaces
– Analog Input
– Digital Output
Input-Output SNR
– 90dB
Maximum Throughput Rate
− 100 kHz
Total Harmonic Distortion
– 0.1%
Block Owner: Ayodeji Opadeyi
47
Transmitter Layout
Allocated Power
Supply Area is
4” × 4” × 2”
Block Owner: Eenas Omari
48
MIRSS-2K5
Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Ayodeji Opadeyi
49
ADC
Standard Requirements
Temperature Ranges
– Operating Temperatures -40°C – 85°C
– Storage Temperatures -65°C –150°C
Max Volume
– 103.24 cm3
Max Mass
– 0.1kg
Block Owner: Ayodeji Opadeyi
50
ADC
Block Diagram
5 VDC Input -5 VDC Input
Differential Input
Block Owner: Ayodeji Opadeyi
ADC
Serial Output
to
IR Transmitter
51
ADC Schematic
Block Owner: Ayodeji Opadeyi
52
ADC
Key Components
Product
– Eight 5% tolerance resistors, ½ W
•
–
Two op-amps
•
–
Part of the signal conditioning to reduce the analog input to
the ADC
High speed, low noise to condition the input signal by
attenuating the analog input
2 Max195 chips (Surface mount)
•
•
•
85 kSps max
16 bit resolution, serial output
1.7 MHz max clock frequency
Block Owner: Ayodeji Opadeyi
53
ADC
Resistor Selection
•
Noise was considered when choosing the resistors
vn2 = 4kTRB
k  Boltzman’ s constant 1.380658 10-23 ( J / K )
T  Temperatur e (K)
R  Resistance ()
B  noise bandwidth( Hz)
From the above equation we can see that when the resistor is increased, the square
of the noise voltage also increases.
•
•
•
•
•
•
The current entering the ADC also has to be minimized, therefore I chose resistors
appropriately.
With the above considerations in mind, I chose my resistor values in order to have
the ADC input current at a minimum, and the noise voltage at a minimum.
R1 = 10 kΩ
R2 = 3.9 kΩ
R5 = R1 || R2 = 3k Ω
R7 = 100 Ω
Block Owner: Ayodeji Opadeyi
54
ADC
Worst Case Analysis
•Gain Error due to Resistor Tolerances
Av (nominal)  
R2
 0.39
R1
Av (min)  
0.95 R2
 0.353
1.05 R1
Av (max)  
1.05 R2
 0.431
0.95 R1
Block Owner: Ayodeji Opadeyi
55
ADC
Testing and Verification
Analog Input
to op-amp
Reduced
Analog input
to ADC
Block Owner: Ayodeji Opadeyi
56
ADC
Testing and Verification
End of
Conversion
Signal
ADC Digital
Output with
0 V input
0 V = 1000 0000 0000 0000 binary
Block Owner: Ayodeji Opadeyi
57
ADC
Reliability Analysis
• Block FITs:
– 745.1 failure Units per billion hours
• MTBF:
– 153.1 years
• Most unreliable
– ADC, and Capacitors
• Possible solutions to improve the reliability
– Use more reliable capacitors
– ADC cannot be changed
Block Owner: Ayodeji Opadeyi
58
ADC
Life Parameters
μ
σ
2.5σ
3.5σ
μ+2.5σ-p
μ+3.5σ-p
Device Type (Amplifier)
2004.5
8.3
20.75
29.05
19.75
28.05
Technology (Bipolar)
Package (DIP)
Voltage (15V)
1975
1987
1992.5
12.5
7.8
5.3
31.25
19.5
13.25
43.75
27.3
18.55
0.75
1
0.25
13.25
8.8
5.55
2001.5
7.8
19.5
27.3
15.5
23.3
2010
1987
1992.5
12.5
7.8
5.3
31.25
19.5
13.25
43.75
27.3
18.55
35.75
1
0.25
48.25
8.8
5.55
Component Type
MAXIM IC MAX427
Primary Attribute:
Secondary Attribute:
Obsolescence window:(0.25, 5.55)
MAXIM IC MAX195
Primary Attribute:
Converter)
Secondary Attribute:
Device Type (A/D
Technology (CMOS)
Package (DIP)
Voltage(5V)
Obsolescence window:(0.25, 5.55)
Present Date (p) = 2005.5
Block Owner: Ayodeji Opadeyi
59
ADC
Life Parameters
Component Type
YAGEO RESISTOR
Primary Attribute:
Device Type (Carbon Film)
μ
σ
2.5σ
3.5σ
1980
8.5
21.25
29.75
1985
10
25
35
μ+2.5σ-p
-4.25
μ+3.5σ-p
4.25
Obsolescence window:(-4.25, 4.25)
NICHICON/ BC COMPONENTS CAPACITOR
Primary Attribute:
Device Type (Electrolytic)
4.5
14.5
Obsolescence window:(4.5, 14.5)
Present Date (p) = 2005.5
Block Owner: Ayodeji Opadeyi
60
ADC
Obsolescence Analysis
• Resistor
– Use Metal Film Resistors.
• A/D Converter
– Use converter with lower voltage amplitude
requirements.
– Use latest surface mount technology.
• Amplifier
– Use better process technology (preferably CMOS).
– Use lower powered amplifiers with less voltage
requirements.
– Use latest surface mount technology.
Block Owner: Ayodeji Opadeyi
61
MIRSS-2K5
Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Kevin Erickson
62
IR Transmitter
• Block Description
– Transmit 2 channels of digital audio to their respective
IR receiver/amplifier.
– Be able to transmit the signals 25 feet to IR receiver.
Block Owner: Kevin Erickson
63
IR Transmitter
Performance Requirements
Power Inputs
• 4.75 – 5.25 Volts DC
Electrical Interfaces
• Serial Digital Input from ADC block
• Digital Infrared output to IR Receiver block
– Infrared wavelength λ = 950 nm
Block Owner: Kevin Erickson
64
IR Transmitter
Standard Requirements
PCB Circuit Area
• 35 cm2
Unique Parts
• Infrared Emitter
Temperature Ranges
• Operating Temperatures: -40°C – 100°C
Humidity Ranges
• Operating humidity: 20% – 85%
Safety
• IEC 61603
– Transmission of audio and related signals using infrared radiation
Block Owner: Kevin Erickson
65
IR Transmitter
Block Diagram
ADC
Digital Audio
sampled at 44.1 kHz
16 bit serial data
Infrared Emitter
Driver
16 bit serial data
sent via Infrared
Emitter (950 nm)
IR Receiver
0101010
The input is a
series of 0’s and
1’s from the
ADC block.
Block Owner: Kevin Erickson
The output is infrared
pulses of the 0’s and 1’s
sent to a photodiode in
the IR Receiver
66
IR Transmitter
Schematic
•5 Volt supply from
transmitter power supply
block
•Digital audio data input
from ADC block
•D1 is an infrared
emitting diode
•R1 is a current limiting
resistor
2 circuits needed
(left and right channel)
Block Owner: Kevin Erickson
67
IR Transmitter
Key Components
• Infrared Emitter
– Transmit 25 feet to IR receiver (continuous forward current >50 mA)
– Fast switching time (<100 ns)
• Transistor
– Fast switching time (<100 ns)
– Maximum continuous drain current of >200 mA
• Current Limiting Resistor
– Power rating and heat dissipation
Block Owner: Kevin Erickson
68
IR Transmitter
Key Component Selection
• Osram Opto Semiconductors SFH-4301
– Continuous Forward Current: 100 mA
– Switching Time: 10 ns
– Wavelength emission: 950 nm
• Fairchild Semiconductor BS-170
– Continuous drain current: 500 mA
– Switching Time: 10 ns
Block Owner: Kevin Erickson
69
IR Transmitter
Key Component Selection
• Current Limiting Resistor
– 10Ω carbon film resistor
– ½ Watt
R1  VCC  VF  VDS ( on)  / I F
R1

5  1.7  1.5V

200mA
R1  10
P  I F2  R
P  200mA2 10
P  400mW
Block Owner: Kevin Erickson
70
IR Transmitter
Verification and Prototyping Plan
• Simulate IR Transmitter circuit with SPICE program
– Particular attention to Infrared Emitter current
• Prototype IR Transmitter circuit on proto board
• Verify current through Infrared Emitter in lab environment
• Design IR Receiver to test and verify distance of system
Block Owner: Kevin Erickson
71
IR Transmitter
Verification
SPICE Simulation shows
175 mA through the
infrared emitter
1.8 Volt drop across
Current limiting resistor.
IEmitter = 180 mA for both
Left and Right Channel
from Lab evaluation
Block Owner: Kevin Erickson
72
IR Transmitter
Obsolescence Analysis
Component Type
μ
σ
μ+2.5σ-p
μ+3.5σ-p
OSRAM Infrared Emitter
Primary Attribute:
Infrared Emitter
Secondary Attribute: CMOS Technology
Other Package
5V process
Obsolescence window: (0.25, 5.55)
2004.5
2010
1999
1992.5
8.3
12.5
5.6
5.3
19.75
35.75
7.5
0.25
28.05
48.25
13.1
5.55
KEMET Capacitors
Primary Attribute:
Ceramic
Obsolescence window: (9.5,14.55)
1980
14
9.5
14.5
KEMET Capacitors
Primary Attribute:
Tantalum & Electrolytic
Obsolescence window: (4.5,14.5)
1985
10
4.5
14.5
YAGEO Resistors
Primary Attribute:
Carbon Film
Obsolescence window: (-4.25,4.25)
1980
8.5
-4.25
4.25
Present Date (p) = 2005.5
Block Owner: Kevin Erickson
73
IR Transmitter
Reliability and Sustainability
• MTBFTransmitter =131.3 years
• FITTransmitter = 869 per billion hours
• 3 Worst Parts
– Carbon Film Resistors
– Infrared Emitters
– Capacitors (not including ceramic)
• Possible Corrective Actions
– Switch to Metal Film Resistors
– No Direct Corrective Action for Infrared Emitter
– Possible switch to all ceramic capacitors
Block Owner: Kevin Erickson
74
Receiver Power Supply
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Rick Ryer
75
Receiver Power Supply
Block Description
• Supplies IR Receiver, DAC, and audio
amplifier in the receiver unit.
• Plugs into 120 V line voltage and provides:
– +/- 5 V DC @ 0.25 A for DAC
– +/- 15 V DC @ 0.25 A for IR Receiver
– +/- 35 V DC @ 2 A for audio amplifier
Block Owner: Rick Ryer
76
Receiver Power Supply
Standard Requirements
• Temperature Range
– Storage: -10 oC to 70 oC
– Operating: 10 oC to 40 oC
• Humidity Range
– Storage: 2% to 98% RH
– Operating: 2% to 98% RH
• Maximum PCB area
– 1277 cm2
Block Owner: Rick Ryer
77
Receiver Power Supply
Performance Requirements
• Power Input:
– 102 to 132 V AC @ 57 to 63 Hz
• Power Output:
– DC output – 5 A total
• 0.25 A at +/- 5 V, ± 0.25 V
• 0.25 A at +/- 15 V, ± 0.75 V
• 2 A at +/- 35 V, ± 1.0 V
Block Owner: Rick Ryer
78
Receiver Power Supply
Signal Definitions
Power Signals
Receiver Power for amplifier +35V (+Vcc)
Receiver Power for amplifier -35V (-Vcc)
DAC Power +15V (+Vdd)
DAC Power -15V (-Vdd)
Logic +5V (+Vee)
Logic -5V
Power3 AC Input
Block Owner: Rick Ryer
Type
DC Power
DC Power
DC Power
DC Power
DC Power
DC Power
AC Power
Direction
Output
Output
Output
Output
Output
Output
Input
Voltage
Nominal
35.0V
-35.0V
15.0V
-15.0V
5.0V
-5.0V
120V
Voltage Range
Min
Max
34V
-36V
14.9V
-15.1V
4.95V
-5.05V
102V
36V
-34V
15.1V
-14.9V
5.05V
-4.95V
132V
Freq
Nominal
DC
DC
DC
DC
DC
DC
60Hz
Freq Range
Min
Max
0
0
0
0
0
0
57Hz
N/A
N/A
N/A
N/A
N/A
N/A
63Hz
% V-Reg
Max
2.00%
2.00%
1.00%
1.00%
1.00%
1.00%
15.00%
V-Ripple
Max
0.1V
0.1V
0.1V
0.1V
0.1V
0.1V
N/A
Current
Max
2A
2A
0.25A
0.25A
0.25A
0.25
5A
79
Receiver Power Supply
Block Diagram
Signal Isolation
and Conditioning
(Rectifier)
AC input
Voltage
Transformer with
Regulator
+/- 35 V
Voltage
Transformer with
Regulator
+/- 15 V
Voltage
Transformer with
Regulator
Switching
Control
Block Owner: Rick Ryer
+/- 5 V
Feedback
&
Isolation
80
Receiver Power Supply
Detailed Schematic
Block Owner: Rick Ryer
81
Receiver Power Supply
Schematic Notes
• Voltage Regulators
– +/- 5 V DC regulator uses LM2585
– +/- 15 V DC regulator uses LM2588
– +/- 35 V DC regulator uses LM2587
• Implementation
– Mostly Thru-Hole technology for prototype
– Nearly all surface mount for product.
Block Owner: Rick Ryer
82
Receiver Power Supply
Block Attributes
Block Location
– This block will reside in a metal enclosure at the
rear of the receiver package.
– It will reside on its own circuit board within this
enclosure.
– Connection to other PCB will be made via heavy
gauge wire and a connector
Testing
– This block requires no special testing other than
verify the performance requirements.
– Safety standard testing will rely on the success of
the metal enclosure as shielding
Block Owner: Rick Ryer
83
Receiver Power Supply
Layout
Block Owner: Rick Ryer
84
Receiver Power Supply
Key Component Selection
• Transformer
– Must provide at least 70 VA power for audio amplifier
(35 V at 2 A)
– Must support 5 A on secondary windings
• 35 V regulator
– Must switch fast enough to sustain 70 W on output
– Must provide +/- 35 V at output
– Must accept +/- 18 V DC input (based on transformer
specifications)
Block Owner: Rick Ryer
85
Receiver Power Supply
Lab Results
• Transformers
Block Owner: Rick Ryer
86
Receiver Power Supply
Lab results
• Regulators
Block Owner: Rick Ryer
87
Receiver Power Supply
Reliability
Part
Capacitor - 0.68 uF
Capacitor - 1 uF
Capacitor - 4700 uF
Resistor
Diode (Schottkey)
Diode (Zener)
Mos IC
Transformer (>1 VA)
Plastic Connector
FIT
120
120
120
0.05
3.6
17.4
9
70
150
lB
0.00105192
0.00105192
0.00105192
4.383E-07
3.15576E-05
0.000152528
0.000078894
0.00061362
0.0013149
pT
pV
pE
1.630503542 0.15123976
1
1.630503542 0.472366553
1
1.630503542 0.472366553
1
0.949163781 0.137059276
1
0.964289579
1
1
0.901492367
1
1
1.045446895
1
1
1.491824698
1
1
0.860707976
1
1
Time (yr)
0.08
(1 month)
pQ
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
ltotal
R(t)
F(t)
Number of
components
3
3
6
3
9
4
3
4
1
l
0.000972751
0.00303819
0.006076379
2.13822E-07
0.000342345
0.000687516
0.000309298
0.004577067
0.001414681
0.017418441
0.998549516
0.001450484
Greatest λ contribution is from Capacitors,
Transformer, and Connector!
Block Owner: Rick Ryer
88
Receiver Power Supply
Reliability
• Reliability after 1 month (warranty period):
– R(0.08) = 99.86%
• Reliability after 1 year:
– R(1) = 98.27%
• Block Metrics
– FITs: 654.9 Failures per billion hours
– MBTF: 187 years
Block Owner: Rick Ryer
89
Receiver Power Supply
Reliability
• Worst failure contributors
– Capacitors
– Connectors
– Transformer
• Corrective Actions
– Use capacitors with higher voltage rating
– Use stronger polymer for connector
– Use multiple, smaller transformers for the
different supplies.
Block Owner: Rick Ryer
90
Receiver Power Supply
Obsolescence
µ + 2.5σ - P µ + 3.5σ - P
Ohmite (MOX-300001006J)
Primary Attributes:
Metal Film Resistor
14.5
26.5
Panasonic – ECG (ECJ-3YB1E564K)
Primary Attributes:
Ceramic Capacitor
9.5
23.5
Belfuse (A41-120-38)
Primary Attributes:
15.5
21.5
15
0.75
5.75
21.25
13.25
12.25
Transformer
National Semiconductor (LM2585,LM2588)
Primary Attributes:
Voltage Regulator
Secondary Attributes: Technology (Bipolar)
Package (SOP)
Present Year (P) = 2005.5
Block Owner: Rick Ryer
91
Receiver Power Supply
Obsolescence Analysis
• Worst Part is voltage regulator
– Bipolar technology main limitation
– Replace with CMOS part if possible
• All other parts provide comfortable margin
for obsolescence
Block Owner: Rick Ryer
92
MIRSS-2K5
Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Kevin Erickson
93
IR Receiver
• Block Description
– Receives the infrared signal from the IR Transmitter
block
– Converts the infrared light to a voltage
– Conditions the signal to a logic level voltage for the
DAC block
Block Owner: Kevin Erickson
94
IR Receiver
Performance Requirements
Power Inputs
• ±14.25 – ±15.75 Volts DC
Electrical Interfaces
• Infrared Input from IR Transmitter block
– Infrared wavelength λ = 950 nm
• Serial Digital Output to DAC block
Block Owner: Kevin Erickson
95
IR Receiver
Standard Requirements
PCB Circuit Area
• 45 cm2
Unique Parts
• Photo Diode
• High Speed, Low Distortion, Voltage Feedback Amplifier
Temperature Ranges
• Operating Temperatures: -40°C – 85°C
Humidity Ranges
• Operating humidity: 2% – 98%
Block Owner: Kevin Erickson
96
IR Receiver
Block Diagram
16 bit serial data
sent via Infrared
Emitter (950 nm)
Photodiode
Transimpedance
Amplifier
16 bit serial data to
DAC block
Comparator
DAC
0101010
Block Owner: Kevin Erickson
97
IR Receiver
Schematic
2 circuits needed
(left and right channel)
Transimpedance
Amplifier
Comparator
Photodiode
•D1 is a
photodiode
(λPeak=900nm)
•U1 creates the
transimpedance amplifier
Vout  I Photo  R1
Block Owner: Kevin Erickson
•U2 is a 5V comparator
for 5V logic
98
IR Receiver
Key Components
• Photodiode
• Fast switching time
• Daylight Filter
• Op-Amp
•
•
•
•
High slew rate
Large gain bandwidth product
Low input biasing current
Low input voltage noise
Block Owner: Kevin Erickson
99
IR Receiver
Key Component Selection
• Osram Opto Semiconductors SFH-229FA
– Optical Rise and Fall time: 10ns
– Max Photo Current: 20 μA
– Peak Wavelength: 900 nm
– Sensitivity Range: 730 – 1100 nm
• Daylight Filtering Case
• National Semiconductor LM6171
– Slew Rate: 3600 Volts/ μsec
– Gain Bandwidth Product: 100 MHz
– Max Input Biasing Current: 4000 nA
– Voltage Noise: 12 nV/√Hz
Block Owner: Kevin Erickson
100
IR Receiver
Transimpedance Amplifier
A Typical IPhoto = 5μA
from photodiode
IPhoto
Vout  I Photo  R1
Vout  5A 1M  5V
Block Owner: Kevin Erickson
101
IR Receiver
Prototyping and Verification Plan
• Prototype IR Receiver circuit(s) on proto board
• Set up IR Transmitter to transmit 1 kHz 0-5 Volt
square wave
– Observe that the IR Receiver works under short
distances
– Lengthen the distance between the IR Transmitter and
IR Receiver and observe the output of the amplifier
– Speed up IR Transmitter to 1 MHz
• Explore other Photodiode circuits to meet
distance and/or speed requirements
Block Owner: Kevin Erickson
102
IR Receiver
Verification
•
Suggested screen captures
– Output of op-amp
•
Digital Photo showing distance of transmission
Block Owner: Kevin Erickson
103
IR Receiver
Life Parameters
Component Type
μ
σ
μ+2.5σ-p
μ+3.5σ-p
OSRAM Photodiode SFH-229FA
Primary Attribute:
Photodiode
Secondary Attribute:
CMOS Technology
Other Package
5V process
Obsolescence window: (0.25, 5.55)
2004.5
2010
1999
1992.5
8.3
12.5
5.6
5.3
19.75
35.75
7.5
0.25
28.05
48.25
13.1
5.55
National Semiconductors LM6171
Primary Attribute:
Op-amp
Secondary Attributes: CMOS Technology
DIP Package
5V process
Obsolescence window:
(0.25,5.55)
2004.5
2010
1987
1992.5
8.3
12.5
7.8
5.3
19.75
35.75
1.0
0.25
28.05
48.25
8.8
5.55
KEMET Capacitors
Primary Attribute:
Obsolescence window:
Ceramic
(9.5,23.5)
1980
10
9.5
23.5
YAGEO Resistors
Primary Attribute:
Obsolescence window:
Carbon Film
(-4.25,4.25)
1980
8.5
-4.25
4.25
Present Date (p) = 2005.5
Block Owner: Kevin Erickson
104
IR Receiver
Reliability and Sustainability
• MTBFTransmitter =125.6 years
• FITTransmitter = 908 per billion hours
• 3 Worst Parts
– Carbon Film Resistors
– Photodiode
– Op-Amp
• Possible Corrective Actions
– Switch to Metal Film Resistors
– No Corrective Action for Photodiode
– Switch to a newer package design on op-amp (SOP)
Block Owner: Kevin Erickson
105
MIRSS-2K5
Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Ayodeji Opadeyi
106
DAC
Performance Requirements
Power Inputs
– DC Power 4.75 – 5.25 V,
– DC Power ±14.25 – ±15.75V
Electrical Interfaces
– Analog Output, Digital Input
Input-Output SNR
– 90dB
Maximum Throughput Rate
− 100 kHz
Total Harmonic Distortion
– 0.1%
Block Owner: Ayodeji Opadeyi
107
DAC
Standard Requirements
Temperature Ranges
– Operating Temperatures -40°C – 85°C
– Storage Temperatures -65°C –150°C
Max Volume
– 103.24 cm3
Max Mass
– 0.1kg
Block Owner: Ayodeji Opadeyi
108
DAC Block Diagram
5 VDC Input
Serial Input
from
IR Receiver
Block Owner: Ayodeji Opadeyi
DAC
Outputs to
Power
Amplifier
Differential Output
109
DAC
Key Components
•
Eight 5% resistors ½ W
– For restoring the signal to its original form
•
two op-amps
– Amplifying the signal to its original amplitude
– Low noise, high speed amplifiers
•
2 Max542 chips (Surface mount)
– Converts the digital signal back to analog
– 16 Bit serial input
Block Owner: Ayodeji Opadeyi
110
DAC
Schematic
Block Owner: Ayodeji Opadeyi
111
DAC
Resistor Selection
• The resistors were chosen to reverse the
attenuation caused by the ADC signal
reduction, but it had to be amplified by 2
because the reference voltage of the ADC
is 5V, and that of the DAC is 2.5V.
• R1 = 20 kΩ
• R2 = 3.9 kΩ
• R5 = R1 || R2 ≈ 3.3k Ω
Block Owner: Ayodeji Opadeyi
112
DAC
Worst Case Analysis
•Gain Error due to Resistor Tolerances
R2
Av  
 5.128
R1
Av (min)
0.95R2

 4.640
1.05R1
Av (max)
1.05R2

 5.668
0.95R1
Block Owner: Ayodeji Opadeyi
113
DAC
Block Reliability
• Block FITs:
– 571.3 failure Units per billion hours
• MTBF:
– 199.7 years
• Most unreliable parts
– DAC, and Capacitors
• Solution to improve the reliability
– Use more reliable capacitors
– DAC cannot be changed.
Block Owner: Ayodeji Opadeyi
114
DAC
Life Parameters
Component Type
μ
σ
2.5σ
3.5σ
μ+2.5σ-p
μ+3.5σ-p
MAXIM IC MAX427/MAX400
Primary Attribute:
Device Type (Amplifier)
2004.5
8.3
20.75
29.05
19.75
28.05
1975
1987
1992.5
12.5
7.8
5.3
31.25
19.5
13.25
43.75
27.3
18.55
0.75
1
0.25
13.25
8.8
5.55
2001.5
7.8
19.5
27.3
15.5
23.3
2010
1987
1992.5
12.5
7.8
5.3
31.25
19.5
13.25
43.75
27.3
18.55
35.75
1
0.25
48.25
8.8
5.55
Secondary Attribute:
Technology (Bipolar)
Package (DIP)
Voltage (5V)
Obsolescence window:(0.25, 5.5)
MAXIM IC MAX542
Primary Attribute:
Converter)
Device Type (D/A
Secondary Attribute:
Technology (CMOS)
Package (DIP)
Voltage(5V)
Obsolescence window:(0.25, 5.55)
Present Date (p) = 2005.5
Block Owner: Ayodeji Opadeyi
115
DAC
Life Parameters
Component Type
YAGEO RESISTOR
Primary Attribute:
Device Type (Carbon Film)
μ
σ
2.5σ
3.5σ
μ+2.5σ-p
μ+3.5σ-p
1980
8.5
21.25
29.75
-4.25
4.25
1985
10
25
35
4.5
14.5
Obsolescence window:(-4.25, 4.25)
NICHICON/ BC COMPONENTS CAPACITOR
Primary Attribute:
Device Type (Electrolytic)
Obsolescence window:(4.5, 14.5)
Present Date (p) = 2005.5
Block Owner: Ayodeji Opadeyi
116
DAC
Worst Case Parts
• Resistor
– Use Metal Film Resistors.
• D/A Converter
– Use converter with lower voltage amplitude
requirements.
– Use latest surface mount technology.
• Amplifier
– Use better process technology (preferably CMOS).
– Use lower powered amplifiers with less voltage
requirements.
– Use latest surface mount technology.
Block Owner: Ayodeji Opadeyi
117
MIRSS-2K5
Block Diagram
Analog Channels
from Receiver
(Left & Right Rear)
Transmitter
Transmitter
Power Supply
Analog
ADC
IR Transmitter
(Ayo)
(Eenas)
(Kevin)
Digital
Infrared
Receiver × 2
Receiver
Power Supply
Amplifier
(Brian)
DAC
Analog
IR Receiver
(Ayo)
(Kevin)
Digital
(Rick)
Analog
Channel to
Speaker
Block Owner: Brian Felsmenn
118
Audio Power Amplifier
• Block Description
– Receives analog signal from DAC Block
– Goes through 3 stages of filtering and
amplification to drive loudspeaker
From D/A
Converter
Input
Stage
Block Owner: Brian Felsmenn
2 Power
Op-Amps
Output
Stage
To Loudspeaker
119
Audio Power Amplifier
Detailed Design
Standard Requirements
• Operating Temperature Range:
• Relative Humidity (max):
0-40°C
90%RH (max)
Performance Requirements
•
•
•
•
•
•
Voltage Gain:
Output Power:
Signal-to-Noise Ratio (SNR):
Common Mode Rejection Ratio (CMRR):
Frequency Response:
Total Harmonic Distortion (THD + Noise):
20 dB (min)
60-70 W
98 dB (min)
100 dB (min)
20-20kHz
0.01% (max)
Block Owner: Brian Felsmenn
120
Audio Power Amplifier
Block Description
Negative
Feedback
Input Audio
Signal
Input
Stage
DC Power
Supply
Output
Audio
Signal
2 Power
Op-Amps
From D/A
Converter
Negative
Feedback
Block Owner: Brian Felsmenn
Output
Stage
To Loudspeaker
DC Power
Supply
121
Audio Power Amplifier
Detailed Design Issues
• Additional Design Issues:
– Thermal Protection
– Maximum Power Dissipation
– Heat Sink Determination
– Voltage Gain & Feedback
– Over Voltage and Under Voltage Protection
Block Owner: Brian Felsmenn
122
Audio Power Amplifier
Detailed Design
Overall Design Configuration
• Parallel Amplifier Configuration – use two opamps connected in parallel to drive load
• Design both amplifiers to have close to identical
gain
• Connect audio input to both op-amps
• Connect op-amp outputs in parallel to drive
single load
• Ideally each amplifier shares output current
equally
• Divides Power Dissipation between two LM3876
ICs to reduce heat stress on each IC
Block Owner: Brian Felsmenn
123
Audio Power Amplifier
Detailed Design
Power Requirements Calculation
Output Power = 60 W
Load Impedance = 8Ω
Peak Output Voltage = √(2*RL*Po) = 30.98 V
Peak Output Current = √(2*Po/RL) = 3.87 A
Need Power Supply Voltage = 30.98V + 5V
= 35.98V ≈ 35 V
Block Owner: Brian Felsmenn
124
Audio Power Amplifier
Detailed Design
•
•
•
•
Op-Amp and Feedback Design &
Calculations
Non-inverting op-amp configuration with
negative feedback
R4 and R6 set the gain of op-amp
Gain (nominal) = R6/R4 + 1
= 20kΩ/1kΩ +1 =21
Gain (nominal) = 20log(21) = 26 dB
Block Owner: Brian Felsmenn
125
Audio Power Amplifier
Detailed Design Schematic
Op Amp and Feedback
Block Owner: Brian Felsmenn
126
Audio Power Amplifier
Detailed Design
Error Calculations
Offset Error Contribution:
• Error Voltage due to Vio (Input Offset Voltage):
• Verror = Vio(1+Rf/Rp)
• Verror = 10mV(1+20k/1k) = 210 mV
• Conclusion: offset error due to op-amps has
insignificant effect on design
Block Owner: Brian Felsmenn
127
Audio Power Amplifier
Detailed Design
Error Calculations
•
•
•
•
•
•
•
Gain Error: (5% tolerance resistors)
Gain (nominal) = 1 + Rf/Rp = 1 + 20k/1k = 21
Resistor Tolerances: Assume Rf = Rf + 5% and
Rp = Rp – 5%, then
If Rf = 21k and Rp = 0.95k, then
Av = 1 + 21k/0.95k = 23.1
Gain Error = Av(nom) – Av = 21 – 23.1 = 2.1
Conclusion: 5% tolerance too large to match gain
accurately for parallel configuration
Choose resistors with 1% tolerances to set gain
Block Owner: Brian Felsmenn
128
Audio Power Amplifier
Detailed Design
Error Calculations
•
•
•
•
•
•
Gain Error (1% tolerance resistors)
Gain (nominal) = 1 + Rf/Rp = 1 + 20k/1k = 21
Resistor Tolerances: Assume Rf = Rf + 1% and
Rp = Rp – 1% then
Rf = 20.2k and Rp = 0.99k
Then Av = 1 + Rf/Rp = 1 + 20.2k/0.99k = 21.4
Gain Error = Av(nom) – Av = 21 – 21.4 = 0.4
Conclusion: 1% resistors offer much better gain
error and matching for parallel amplifier
configuration
Block Owner: Brian Felsmenn
129
Audio Power Amplifier
Detailed Design
Input Stage Design Calculations:
Need high-pass filter to prevent oscillations:
• R1 and C1 create a high-pass filter:
• Choose R1 = 47kΩ and C1= 1μF
• So F = 1/(2π*R1*C1) = 3.38 Hz (cut-off freq)
• C1 is also a coupling capacitor
Need high-pass filter on feedback loop for unity gain at DC:
• R4 and C2 create a high-pass filter:
• Choose R4 = 1kΩ and C2 = 47μF
• So F = 1/(2π*R4*C2) = 3.38 Hz (cut-off freq)
• R4 is also a gain determining resistor
Block Owner: Brian Felsmenn
130
Audio Power Amplifier
Detailed Design Schematic – Input Stage
Block Owner: Brian Felsmenn
131
Audio Power Amplifier
Detailed Design
Power Supply Input Circuit Design
• Power Supply and Filtering Capacitors
• Capacitors C4, C5 and C6 provide power
supply filtering and bypassing
• Need filtering and bypassing capacitors to
smooth out any power supply ripple
voltages and DC voltage to op-amps will
remain constant
Block Owner: Brian Felsmenn
132
Audio Power Amplifier
Detailed Design Schematic
DC Power Supply
Block Owner: Brian Felsmenn
133
Audio Power Amplifier
Detailed Design
Output Stage Design & Calculations:
Need to stabilize output stage with a pole that
reduces high frequency instabilities
• R9 and C7 create a high frequency pole:
• Choose R9 = 2.7Ω and C7 = 0.1μF
• F = 1/(2π*R9*C7) = 5.89 MHz
• R10 balances current to loudspeaker caused by
gain or DC offset differences between op-amps
• Choose R10 = 0.1Ω (3W power rating)
Block Owner: Brian Felsmenn
134
Audio Power Amplifier
Detailed Design Schematic- Output Stage
Block Owner: Brian Felsmenn
135
Audio Power Amplifier
Detailed Design – Parallel Configuration
Block Owner: Brian Felsmenn
136
Audio Power Amplifier
Detailed Design - Schematic
Block Owner: Brian Felsmenn
137
Audio Power Amplifier
Detailed Design
Maximum Power Dissipation
Power dissipation is the power that is converted
to heat within the amplifier
Important parameter used to determine heat
sinking requirements and output power
• Pi + Ps = Po + Pd (Conservation of Energy)
Input Signal Power (Pi)
Power from
DC Power Supply (Ps)
Block Owner: Brian Felsmenn
Output Signal Power (Po)
Audio Power
Amplifier
Power Dissipated (Pd)
138
Audio Power Amplifier
Detailed Design
Maximum Power Dissipation Calculation
Parallel Amplifier Configuration
Load Equivalent Resistance:
• RL(parallel) = RL(total) * Number of ICs driving load
• RL(parallel) = 8 Ω * 2 ICs driving load = 16 Ω
Maximum Power Dissipation:
• PDmax = (Vcc2)/(2π2*RL(parallel))
• PDmax = (70V2)/(2π2*16 Ω) = 15.51 W
• Total PDmax = 2 ICs * PDmax = 2 * 15.51 W = 31.02 W
Block Owner: Brian Felsmenn
139
Audio Power Amplifier
Detailed Design
Heat Sink Determination
Sink to Ambient Thermal Resistance Calculation
•
•
•
•
•
•
θJC = thermal resistance (junction to case) = 0.8ºC/W
θCS = thermal resistance (case to sink) = 0.2ºC/W
θSA = thermal resistance (sink to air)
θSA = [(TJmax - TAmb) - PDmax(θJC + θCS)] / PDmax
θSA = [(150°C - 50°C) - 31.02(0.8 + 0.2)] /31.03 = 2.22°C/W
θSA = 2.22°C/W for worst case (ambient temp of 50ºC)
• Conclusion: choose heat sink with θSA ≤ 2.22°C/W
Block Owner: Brian Felsmenn
140
Audio Power Amplifier
Detailed Design
Features of LM3876 Audio Amplifier
•
•
•
•
Thermal Protection Circuits
Protection to prevent long-term thermal stress
When die temperature exceeds 150°C, the
LM3876 shuts down until temperature falls
below 145°C, then amp restarts
Improves reliability
Still need an adequate heat sink to prevent
IC from approaching 150°C
Block Owner: Brian Felsmenn
141
Audio Power Amplifier
Features of LM3876 Audio Amplifier
Device Protection
• Under-Voltage Protection of LM3876 built in
protection allows power supplies and voltage
across capacitors to reach full values before
amp turned on to prevent DC output spikes
• Over-Voltage Protection of LM3876
built in protection limits the output current
while providing voltage clamping
Block Owner: Brian Felsmenn
142
Audio Power Amplifier
LM3876 Audio Amplifier
Important Electrical Characteristics
Electrical Characteristics
Typical Value
Conditions
THD+N (Total Harmonic
Distortion + Noise)
0.01% – 0.016%
f = 20Hz – 20kHz
Supply = ± 35V
Output Power = 60W
Load = 8Ω
CMRR (Common Mode
Rejection Ratio)
120 dB
Supply = ± 35V
SNR (Signal-to-Noise
Ratio)
114 dB
f = 1kHz
Output Power = 40W
Block Owner: Brian Felsmenn
143
Audio Power Amplifier
Prototyping Plan
•
•
•
•
Block Area:
Total PCB Area:
PCB Substrate Type:
Comp Attachment Type:
• Types of Connectors
Block Owner: Brian Felsmenn
255 cm2
1277 cm2
outsourced
solder
speaker terminals
144
Audio Power Amplifier
Obsolescence Analysis Table
μ
Component
N
a
t
i
o
n
a
l
S
e
m
i
c
o
n
d
u
c
t
o
r
A
u
d
i
o
P
o
w
e
r
A
Primary attribute:
Secondary attribute:
Obsolescense
window:
Yageo Resistor CFR-25JB-47k
Yageo Resistor CFR-25JB-1k0
Yageo Resistor CFR-25JB-2k7
Obsolescense
window:
Yageo Resistor MFR-25FBF-20k0
Yageo Resistor MFR-25FBF-1k00
Ohmite Resistor 43FR10
Obsolescense
window:
AVX Capacitor BF074D0105K
Obsolescense
window:
EPCOS Capacitor B37982N5104M000
Obsolescense
window:
Nichicon Capacitor UVR1H470MED
Nichicon Capacitor UVZ1H100MDD
Obsolescense
window:
Block Owner: Brian Felsmenn
m
p
l
i
f
i
e
r
L
M
4
7
8
0
T
σ
μ
+
2
.
5
σ
-
p
μ
+
3
.
5
σ
-
p
A
Device type (Power Amp)
Technology (CMOS)
Package style (TO-220)
2004.5
2010.0
1999.0
8.3
12.5
5.6
19.8
35.8
7.5
68.1
129.6
19.8
Carbon Film Resistor
Carbon Film Resistor
Carbon Film Resistor
1980.0
1980.0
1980.0
8.5
8.5
8.5
(7.5,19.8)
-4.25
-4.25
-4.25
4.25
4.25
4.25
Metal Film Resistor
Metal Film Resistor
Metal Film Resistor
1990.0
1990.0
1990.0
12.0
12.0
12.0
(-4.25,4.25)
14.5
14.5
14.5
26.5
26.5
26.5
(14.5,26.5)
Metallized Polyester Film
Cap
1985.0
10.0
4.5
14.5
(4.5,14.5)
Monolithic Ceramic
Capacitor
Electrolytic Capacitor
Electrolytic Capacitor
1980.0
1985.0
1985.0
14.0
10.0
10.0
9.5
(9.5,23.5)
4.5
4.5
23.5
14.5
14.5
(4.5,14.5)
145
Audio Power Amplifier
Reliability and Obsolescence Analysis
• Conclusions:
– MTBF = 373.2
– FIT = 7.74
• Worst Case Parts:
– Carbon Film Resistors (phase-out region)
– Electrolytic Capacitors
• Possible Solutions to correct worst parts
– Substitute metal film resistors for carbon film
– Substitute other capacitor types
Block Owner: Brian Felsmenn
146
Audio Power Amplifier
Block Requirement Verification
Block
Requirement
Verification Plan
Evidence
Operating
Temperature
Lab Testing
Measurement
Frequency
Response
Lab Testing
Scope Traces/
Simulation
Voltage Gain
Lab Testing
Scope Traces/
Simulation
Common CMRR
Lab Testing
Scope Traces
Signal-to-Noise
Ratio (SNR)
Lab Testing
Scope Traces
Output Power
Lab Testing
Scope Traces
Block Owner: Brian Felsmenn
147
Mass Production Strategy
• # of boards: 6 (2 for the transmitter and 2
for each of the receivers)
• Technology: Multilayer PCB
• Packaging: CC (Lead-less chip carrier)
148
Mass Production Parts List
Mfg 1 Part #
Mfg 2
Mfg 2 Part #
TH/SMT
Yageo
CFR-25JB-120R
Panasonic - ECG
ERD-S2TJ121V
TH
Axial
Auto
Panasonic - ECG
Yageo
Yageo
Yageo
Yageo
ERD-S2TJ361V
CFR-25JB-1K3
CFR-25JB-180R
CFR-25JB-220R
CFR-25JB-2K4
Yageo
CFR-25JB-360R
ERD-S2TJ132V
ERD-S2TJ181V
ERD-S2TJ221V
ERD-S2TJ242V
TH
TH
TH
TH
TH
Axial
Axial
Axial
Axial
Axial
Auto
Auto
Auto
Auto
Auto
8.5
8.5
36
8.5
8.5
Panasonic - ECG
Panasonic - ECG
Nichicon
Diodes Inc
National Semiconductor
Fairchild Semiconductor
Erlich Ind.
SurplusTraders
Lite-On Trading USA Inc
Yageo
ERD-S2TJ561V
EEA-FC1E100
UHE1V392MHD
1N5404-T
LM317MDTRK
LM337T
EID-164J48
MD313
LTL-4261N
CFR-25JB-6K2
CFR-25JB-560R
BC Components
2222 021 38109
Panasonic - ECG
EEU-FC1V392
General Semiconductor 1N5404
Texas Instruments
LM317MDCYR
National Semiconductor LM337T
Smi Industrial Elec.
164J48
Westell
C90-606003
Dialight
521-9216
Panasonic - ECG
ERD-S2TJ622V
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
Axial
Radial
Radial
DO-201AD
TO-220
TO-220
N/A
N/A
Radial
Axial
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
36
50.6
750
36
20
20
3767.5
N/A
9
8.5
Yageo
Yageo
Yageo
Yageo
Maxim-IC
Fairchild Semiconductor
Nichicon
BC Components
Maxim-IC
CFR-50JB-3K9
CFR-50JB-10K
CFR-50JB-3K0
CFR-50JB-100R
Max427EPA
1N914BTR
UVR1H0R1MDD
2222 138 36109
Max541
Panasonic ECG
Panasonic ECG
Panasonic ECG
Panasonic ECG
Texas Instruments
ON Semiconductor
Panasonic ECG
Panasonic ECG
Texas Instruments
ERD-S1TJ392V
ERD-S1TJ103V
ERD-S1TJ302V
ERD-S1TJ101V
UA741CP
NSD914XV2T1
ECA-1HHG0R1
EEA-FC1E100
ADS7813P
TH
TH
TH
TH
TH
TH
TH
TH
TH
Axial
Axial
Axial
Axial
DIP
Axial
Radial
Axial
DIP
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
72
72
72
72
168
36
160
320
168
Osram
Kemet
Yageo
Yageo
Yageo
SFH 4301
C315C473M5U5CA
CFR-50JB-20R
CFR-25JB-1K0
CFR-25JB-22R
-Panasonic
Panasonic
Panasonic
Panasonic
-ECK-F1E473ZVE
ERD-S2TJ200V
ERD-S2TJ102V
ERD-S2TJ220V
TH
TH
TH
TH
TH
Radial
Radial
Axial
Axial
Axial
Manual
Manual
Manual
Manual
Manual
7
7
72
36
36
Panasonic - ECG
Panasonic - ECG
Panasonic - ECG
Panasonic - ECG
Yageo
- ECG
- ECG
- ECG
- ECG
Package Placement Auto/Man
Area mm 2 PCB
Mfg 1
Fairchild Semiconductor 2N7002
ON Semiconductor
2N7002LT1
SMT
SOT-23
Manual
16
Osram
Yageo
-Panasonic - ECG
-ERD-S2TJ105V
TH
TH
Radial
Axial
Manual
Manual
14
36
SFH 229FA
CFR-25JB-1M0
National Semiconductor LM6171
National Semiconductor LMH6624MA
TH
8-DIP
Manual
168
National Semiconductor LM311
Yageo
CFR-50JB-3K9
Yageo
CFR-50JB-10K
Yageo
CFR-50JB-3K0
Yageo
CFR-50JB-10R
Maxim-IC
Max400
Maxim-IC
Max427
Nichicon
UVR1H0R1MDD
BC Components
2222 138 36109
Maxim-IC
Max541
Yageo
CFR-25JB-47k
Yageo
MFR-25FBF-1K00
Yageo
CFR-25JB-1k0
Yageo
MFR-25FBF-20K0
Yageo
CFR-25JB-2K7
Ohmite
43FR10
AVX
BF074D0105K
Panasonic
ECA-1EM4701
EPCOS
B37982N5104M000
Panasonic
ECA-1HM100I
Nichicon
UVZ1H102MHD
EPCOS
B37982N5104M000
National
LM4780TA
To Be Determined at a later date
Belfuse
A41-130-230
National
LM2585
National
LM2588
National
LM3478
Coilcraft
Q4339-B
Panasonic
ECE-A50ZR68
BC Components
2222 021 38108
Panasonic
EEG-A1H412CGE
Panasonic
ERJ-8ENF8870V
ON Semiconductor
MUR815
IR
MBR350
Linear Technology
Panasonic ECG
Panasonic ECG
Panasonic ECG
Panasonic ECG
Texas Instruments
Texas Instruments
Panasonic ECG
Panasonic ECG
Linear Technology
--------------------------
SMT
TH
TH
TH
TH
SMT
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
TH
SOT-23
Axial
Axial
Axial
Axial
DIP
DIP
Radial
Axial
DIP
Axial
Axial
Axial
Axial
Axial
Axial
Radial
Radial
Radial
Radial
Radial
Radial
TO 220
Manual
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Man
Man
Man
Man
Man
Man
Man
Man
Man
Man
Man
Man
Man
16
72
72
72
72
81
168
160
320
168
36
72
72
72
72
72
80
40
40
40
40
40
480
TH
SMT
SMT
SMT
TH
TH
TH
TH
SMT
TH
TH
Chassis
TO-263
TO-263
TO-263
DIP
Radial
Axial
Axial
Axial
Axial
Axial
Manual
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
Auto
5203
182
182
182
1419
100
68
112
50
120
120
LT1016CN8
ERD-S1TJ392V
ERD-S1TJ103V
ERD-S1TJ302V
ERD-S1TJ100V
OPA277
UA741CP
ECA-1HHG0R1
EEA-FC1E100
LTC1655CN8
--------------------------
Function or Description
36 Specifies output voltage
16430.6
Attributes
Tol% $Cost/One
$Cost Total
RES 120 OHM CARBON FILM 1/4W
5%
$0.067
$0.13
RES
RES
RES
RES
RES
5%
5%
5%
5%
5%
$0.067
$0.067
$0.067
$0.067
$0.067
$0.07
$0.07
$0.13
$0.07
$0.07
5%
20%
20%
N/A
N/A
N/A
N/A
N/A
N/A
5%
$0.067
$0.30
$4.77
$0.41
$1.09
$0.76
$21.25
$0.95
$0.20
$0.067
$0.13
$1.20
$9.54
$1.64
$2.18
$1.52
$21.25
$1.50
$0.20
$0.067
3.9kΩ, 1/2W, Carbon film
5%
10kΩ , 1/2W, Carbon film
5%
3kΩ , 1/2W, Carbon film
5%
100Ω , 1/2W, Carbon film
5%
High speed, Low noise
N/A
100V, 1/2W, 200mA
N/A
0.1µF, 50V, Lead free, Electrolytic
20%
10µF, Miniature, 25V, Electrolytic
20%
16-bits, serial output, 85ksps
N/A
Peak wavelength emission of 950nm
±12° Half angle
40ns Switching times
100 mA of Continuous forward current
Infrared Emitting Diode
-"Speed up" capacitor
0.047 μf, 50 Volt, Ceramic
± 20%
Current Limiting Resistor
20 Ohm, 1/2 Watt
± 5%
To provide resistance
1k Ohm, 1/4 Watt
± 5%
To provide resistance
22 Ohm, 1/4 Watt
± 5%
N-Channel Enhancement Mode FET
Power MOSFET gate drivers
10ns Switching times
Infrared Driver
-Peak wavelength sensity 900nm
±14° Half angle
7.5ns Switching times
Infrared Photodiode
-Feedback Resistor
1M Ohm, 1/4 Watt
± 5%
High Speed
Low Distortion
Low Power
100 MHz Gain-Bandwidth Product
Transimpedance Amp
-5 Volt Comparator
5V logic output
5 Volt logic comparator
-Signal Restoration
3.9kΩ, 1/2W, Carbon film
5%
Signal Restoration
10kΩ , 1/2W, Carbon film
5%
Error Voltage Minimization 3kΩ , 1/2W, Carbon film
5%
Voltage reduction
100Ω , 1/2W, Carbon film
5%
DAC Buffer
Low Offset Voltage, Low noise, single precisionN/A
Signal Restoration
High speed, Low noise
N/A
Bypass capacitors
0.1µF, 50V, Lead free, Electrolytic
20%
Bypass capacitors
10µF, Miniature, 25V, Electrolytic
20%
Data conversion
16-bit, serial input, buffered voltage output
N/A
current limiting resistor
47k, 1/4 Watt, carbon film
5%
current limiting resistors
1.00k, 1/4 Watt, metal film
1%
gain setting resistors
1k, 1/4 Watt, carbon film
5%
feedback resistors
20 k, 1/4 Watt, metal film
1%
filtering capacitors
2.7k, 1/4 Watt, carbon film
5%
current limiting resistors
0.1 ohm, 3 Watt, metal film
5%
coupling capacitor
1uF, Metallized Polyester Film
10%
filtering capacitors
47uF, Electrolytic Radial 50V
20%
power supply filtering capacitors
0.1uF, Monolithic Ceramic
20%
power supply filtering capacitors
10uF, Electrolytic Radial 50 V
20%
power supply filtering capacitors
1000uF, Electrolytic Radial 50 V
20%
filtering capacitors
0.1uF, Monolithic Ceramic
20%
audio power amplifier
Audio Power Amplifier
heat sink
to be determined
Line Voltage to +/- 35 VDC
5
Regulate 5V Switching
>1
Regulate 15V Switching
>1
Regulate 35V Switching
>1
>1
Filtering Capacitors
50V 0.68 uF, Electrolytic
20
Coupling Capacitors
63V 1 uF, Electrolytic
20
Filtering Capacitors
50V, 4700 uF Electrolytic
20
Sets Regulator IC
887 ohms,
1
Bridge
N/A
Over-current protection
Schotkey
N/A
$0.05
$0.05
$0.05
$0.05
$3.55
$0.10
$0.20
$0.35
$2.56
$0.09
$0.09
$0.09
$0.09
$7.10
$0.40
$1.60
$1.41
$5.12
$0.66
$0.18
$0.05
$0.06
$0.06
$1.32
$0.36
$0.10
$0.12
$0.12
$0.25
$0.50
$0.54
$0.06
$1.08
$0.12
$2.83
$5.66
$0.80
$0.05
$0.05
$0.05
$0.05
$6.60
$3.55
$0.20
$0.35
$2.56
$0.06
$0.54
$0.06
$0.11
$0.06
$1.76
$0.23
$0.03
$0.43
$0.03
$1.01
$0.43
$4.60
$1.60
$0.09
$0.09
$0.09
$0.09
$13.20
$7.10
$1.60
$1.41
$5.12
$0.11
$2.16
$0.22
$0.43
$0.22
$7.04
$0.46
$0.12
$1.72
$0.11
$4.04
$1.72
$9.20
$38.72
$3.17
$4.27
$5.15
$4.14
$0.32
$0.12
$1.65
$0.12
$0.96
$0.51
$38.72
$3.17
$4.27
$5.15
$12.42
$0.96
$0.36
$9.90
$0.36
$3.84
$4.59
Specifies
Specifies
Specifies
Specifies
Specifies
output
output
output
output
output
voltage
voltage
voltage
voltage
voltage
360 OHM CARBON FILM 1/4W
1.3K OHM CARBON FILM 1/4W
180 OHM CARBON FILM 1/4W
220 OHM CARBON FILM 1/4W
2.4k OHM CARBON FILM 1/4W
Specifies output voltage
RES 560 OHM CARBON FILM 1/4W
stability ( Improves output impedence)
CAP 10UF 25V ELECT FC RADIAL
Filter Capacitor
CAP 4700UF 50V ELECT HE RADIAL
Full wave rectifier bridge
RECTIFIER GPP 400V 3A DO-201AD
linear positive voltage regulatorIC REG POSITIVE ADJ TO-220, 1.5A
linear negative voltage regulator
IC REGULATOR NEG ADJ TO-220,1.5A
Step down transformer
115V series 48 [email protected] PCB xfrm
Outlet plug (Powers the Transformer)
Three- prong AC plug
ON/OFF mode
LED 3MM ALGAAS RED DIFFUSED
Limits current going through LED
RES 6.2K OHM 1/4W CARBON FILM
Signal reduction
Signal reduction
Error Voltage Minimization
Current reduction
Signal reduction
Signal clamp
Bypass capacitors
Bypass capacitors
Data conversion
Totals
•Primarily Surface Mount parts
•A few through hole components
(Power Supply parts)
•Pb-Free devices
•Automated circuit board
production
$206.83
149
Mass Production Assembly
•
Transmitter
–
–
Surface Mount Design
2 PCB’s
1.
2.
–
–
–
–
–
•
Power Supply
ADC and Infrared Emitter
AC Power Plug-in
Speaker Terminals (left and right channel input)
Small Power Connector between PCB’s
Total Number of Components: 62
Total Area of Components: 2572 mm2
Receiver
–
–
Surface Mount Design
2 PCB’s
1.
2.
–
–
–
–
–
Power Supply
DAC, Infrared Receiver, and Audio Amplifier
AC Power Plug-in
Speaker Terminal (output)
Small Power Connector between PCB’s
Total Number of Components: 115
Total Area of Components: 10232 mm2
150
Production Assembly
Procure Parts
&
Part Setup
Substrate
Fabrication
Surface Mount Assembly, testing
and Packaging Process of Printed
Circuit Boards
Fab, Comp
Prep
Bake, Clean
Mechanical
Hand
Operations
Circuit
Testing and
Stressing
Screen
Solder Paste
Circuit Board
Placement
Auto
Component
Placement
Power
Connectors to
Each Circuit
Board
Reflow
Solder
Finished
Product
Testing
Packaging
151
Product Assembly
Transmitter Circuit Board Placement
152
Product Assembly
Receiver Circuit Board Placement
153
Mass Production Assembly
• Circuit Testing
– Power Supplies
• With-in nominal range of specified output voltages
– Audio Amplifier (8Ω Load)
• Frequency Response
• Gain
• SNR & THD
154
Mass Production Assembly
• Finished Product Testing
– Meets Transmit and Receive Distances
– SNR & THD
– ESD
• Stressing
– Thermal Cycling
– Mechanical Shock and Vibration
– EMC
155
Capstone Design
Team #2
Acknowledgements
• Special Thanks to
– Harley-Davidson Motor Company
– Jim Cummins
– Rajendra Naik
– Jeff Kautzer
156
Prototype Demonstration
157
Related documents