Download Second Order Circuits

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Second Order Circuits
ES-3
Download:
http://www.ece.tufts.edu/~hopwood/downloads/es3/SecondOrderCircuits.ppt
Second Order Circuits
• Contain two independent reactive
components
• This results in a second order differential
equation containing d2i/dt2 or d2v/dt2
Example: Series RLC circuit
L
VS(t)
i(t)
+
C
KVL:
VL + VR + VC = Vs
R
vL (t )  vR (t )  vC (t )  vS (t )
t
di
1
L  iR   i (t )dt  vC (0)  vS (t )
dt
C0
dvS
d 2i
di i (t )
L 2 R 
0 
dt
dt C
dt
d 2i R di i (t ) 1 dvS



2
dt
L dt LC L dt
d 2i
di
1 dvS
2
 2  0 i (t ) 
2
dt
dt
L dt
R
1
...where  
and 0 
.
2L
LC
Find the natural response : vS  0
d 2i
di
2

2



0 i (t )  0
2
dt
dt
di
d 2i
2



2

0 i (t )  0
2
dt
dt
try a solution in the form :
i (t )  kest
substituting :
s 2 kest  2skest  02 kest  0
giving :
s 2  2s  02  0
Use the quadratic equation :
 2  (2 ) 2  4(1)02
    2  02
s
2(1)
Three Cases
• Case 1 - Overdamped: >o  large R:
R
>
2L
1
LC
s1     2  02  0
s2        0
2
2
0
The natural response is two decaying exponentia ls :
in (t )  K1e s1t  K 2 e s2t
Three Cases
• Case 2 - Underdamped: o  small R:
R

2L
1
LC
s1     2  02     1 02   2    j 02   2
s2     2  02    j 02   2
The natural response is two decaying phasors
in (t )  K1e s1t  K 2 e s2t
t
 K1e e
j ( 02  2 ) t
2
2
t  j ( 0  ) t
 K 2e e
 Ke t cos(nt   )...where n  02   2
Three Cases
• Case 3 – Critically damped: o
R

2L
1
LC
s1          0
2
2
0
s2        0    0
2
2
0
The natural response is
in (t )  K1e t  K 2tet
Examples
L
VS(t)
L = 10uH
i(t)
+
C
C = 10nF
R
o = 3.16x106 rad/sec (504 kHz)
R = 10, 63.2, and 1000 ohms
 = 5x105, 3.16x106, and 5x107 s-1
vs
t
Underdamped
Critically Damped
Overdamped
Overdamped: R=1000W
10V
5V
0V
0s
0.2us
0.4us
0.6us
0.8us
1.0us
V(R1:2)
Time
1.2us
1.4us
1.6us
1.8us
2.0us
Underdamped: R=10W
10V
5V
0V
-5V
-10V
1us
0s
2us
3us
4us
5us
V(R1:2)
Time
6us
7us
8us
9us
10us
Critically Damped: R=63.2W
10V
5V
0V
-5V
1us
0s
2us
3us
4us
5us
V(R1:2)
Time
6us
7us
8us
9us
10us
Mechanical Analogy
Wikipedia.com
Automobile:
Mass
 inductor
Suspension:
Spring  capacitor
Shock Absorber: Damper  resistor
Force  voltage
Velocity  current