Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
S!LK Capstone Design Ⅰ 1. CMOS Inverter 2. SONOS Memory 2014. 3. 13 Dae Hwan Kim Jungmin Lee Seungguk Kim silk.kookmin.ac.kr Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <1> CMOS Inverter Basic Theory Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <2> Basic Theory CMOS inverter: • Most basic element of digital static CMOS circuit • Combination of an N-MOSFET and P-MOSFET • One of the transistors is “ON” in the steady state, there is no static current or static power consumption. • Power dissipation occurs only during switching transient when a charging or discharging current is flowing through the circuit. VDD S PMOS WP LP B + I DP I DN D Vin + Vout D - NMOS B S • Drain terminal of nMOS and pMOS are common and connected to the output terminal. • Source terminal of nMOS is connected to the ground. • Source terminal of pMOS is connected to the VDD. WN LN Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <3> Basic Theory CMOS inverter I-V Characteristics: Case 1) Vin= 0 Vgsn= 0 → nMOS “OFF” Vgsp= -VDD → pMOS “ON” ⇒Vout= VDD by current path through pMOS as a pull-up transistor Case 2) Vin= Vdd Vgsn= VDD → nMOS “ON” Vgsp= 0 → pMOS “OFF” ⇒Vout= 0 by current path through nMOS as a pull-down transistor One transistor is “ON”, there is no direct current from VDD to the GND ⇒ No static power consumption Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <4> CMOS Inverter Structure & Reference Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <5> CMOS Inverter (Reference) CMOS inverter : cross-sectional view & circuit (VDD = 1.2V, VIN = 0 ~ VDD) n-type dopant : Arsenic p-type dopant : Boron Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <6> Reference Parameters Geometric parameters Value Process parameters Value The other parameters Value Ltotal [μm] 1.1 Nsub [cm-3] 7x1017 VDD [V] 1.2 Lg [nm] 65 Npg [cm-3] 1x1020 Cload [fF] 2.1 Lsp [μm] 0.1 NS or ND [cm-3] 1x1020 Cmos [fF] 2.1 Tox [nm] 1.5 Nhalo [cm-3] 3x1017 Hsub [μm] 1 ox 3.9 (SiO2) 0.2 nMOS (pMOS) gate type n+ (p+) polysilicon Xj,SD [μm] 0.12 nMOS (pMOS) source/drain type n+ (p+) polysilicon Wn orWp 1 nMOS (pMOS) substrate type p (n) silicon Hpg [μm] [μm] Xj,SD <nMOSFET structure> ox *nMOSFET/pMOSFET/MOS-cap : Type을 제외한 모든 parameters 값은 같음 MOS-cap은 nMOSFET type Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <7> Parameter Variables Variables Nsub [cm-3] Reference 𝟕 × 𝟏𝟎 𝟏𝟕 Npg [cm-3] 𝟏 × 𝟏𝟎𝟐𝟎 Xj,SD [nm] 120 Data #1 Data #2 𝟏𝟕 𝟏𝟖 1× 𝟏𝟎 𝟏 × 𝟏𝟎𝟏𝟗 60 1× 𝟏𝟎 Reference Data #1 Data #2 Wn : Wp 1 : 2.5 1:1 1:4 Cload 1 × CMOS 0.1 × CMOS 10 × CMOS εox SiO2 HfO2 Si3N4 Gate material (qφm) (nMOS : 4.05 pMOS : 5.16) 𝟏 × 𝟏𝟎𝟐𝟏 180 Nhalo [cm-3] 𝟑 × 𝟏𝟎𝟏𝟕 Tox [nm] 1.5 3 6 Lg [nm] 65 40 200 Wn : Wp 1 : 2.5 1:1 1:4 Cload 1 × CMOS 0.1 × CMOS 10 × CMOS εox SiO2 (3.9) HfO2 (22) Si3N4 (7.5) 𝟎 Variables 1 × 𝟏𝟎𝟏𝟖 Xj,SD Polysilicon nMOS : Molybdenum (4.53) pMOS : Copper (4.7) (CMOS = 2.1fF) ox Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <8> Electrical Parameters Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <9> Definition of Electrical Parameters From transfer curve (IDS-VGS) Threshold voltage (VT) The boundary of on/off switching in transistor Subthreshold slope (SS) The variation of gate bias needed for increase of 10 times drain current in subthreshold region Off current (Ioff) Drain current when VGS=0V GIDL current (IGIDL) (Gate-induced drain leakage current) Drain current when VGS=-1V On current (Ion) Drain current when VGS=VDD Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <10> Definition of Electrical Parameters DIBL factor (𝛿) (Drain-induced barrier lowering factor) The variation of threshold voltage according to the variation of drain bias VT (VDS ) [mV/V] VDS What is DIBL? Condition : -short channel length -High drain bias The decrease of energy barrier in channel & source junction with the increase of drain bias The increase of leakage current Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <11> Definition of Electrical Parameters What is GIDL current? Condition : VGS << VFB , VDS > 0 Leakage current of drain-substrate junction Band-to-Band tunneling current of duplicated region of gate-drain Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <12> Circuit Performance Index (1) Voltage Transfer Characteristics Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <13> Voltage Transfer Characteristics (VTC) I= IP-IN IDS NMOS Vin=VDD Vout point: intercept point of IP(Vin)=IN(Vin) III IV PMOS Vin=0 II NMOS PMOS Vin=0 Vin=VDD V I Vout VDD 0 Operation mode I. pMOS linear 영역 Vout IDN =IDP VOH =Vdd III I Slope = -1 nMOS sat. pMOS lin. Both sat. II I 0 VTN IV V Vdd - |VTP | nMOS cut-off 영역, nMOS lin. pMOS sat. V Vin VOL= 0 VTN VIL VIH Vdd Vdd - |VTP | II. II III IV Vin nMOS saturation 영역, pMOS linear 영역 III. nMOS & pMOS saturation 영역 IV. nMOS linear 영역, pMOS saturation 영역 V. nMOS linear 영역, pMOS cut-off 영역 Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <14> Voltage Transfer Characteristics (VTC) The ideal gate should have • • • • Infinite gain in the transition region Gate threshold located in the middle of logic swing High and low noise margins equal to half the swing Input and output impedances of infinity and zero, respectively Vout Ri = Ro = 0 g=- Fanout = NMH = NML = VDD/2 Vin Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <15> Voltage Transfer Characteristics (VTC) V(y) VOH VOU Slope = -1 H VS Slope = -1 VOU LVOL VI VI L H V(x) Voltage gain : AV= (∂Vout/ ∂Vin) Vout= VOUH (output high voltage) when (∂Vout/ ∂Vin)= -1 Vin= VIL (input low voltage) when (∂Vout/ ∂Vin)= -1 Vout= VOUL (output low voltage) when (∂Vout/ ∂Vin)= -1 Vin= VIH (input high voltage) when (∂Vout/ ∂Vin)= -1 VS (switching voltage) when Vin= Vout NMH= VOH - VIH : noise margin high NML= VIL - VOL : noise margin low Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <16> Noise Margin Allowable noise level which does not hurt the logic operation. For robust circuits, want the “0” and “1” intervals to be as large as possible. VDD VDD VOH "1" NMH = VOH - VIH Noise margin high Undefined region (forbidden) VIL Noise margin low VOL VIH NML = VIL - VOL "0" GND Gate output GND Gate input Large noise margins are desirable, but not sufficient requirement. Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <17> Circuit Performance Index (2) Delay Calculation Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <18> Delay Definition Vin Vout Vin Propagation delay Input signal 50% tp = (tpHL + tpLH)/2 tpHL Vout t tpLH 90% Output signal 90% 50% 10% Falling time tf 10% tr t Rising time Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <19> Delay Calculation Propagation delay ① tpHL: pull-down delay time Vin switches from 0 to VDD, Vout decreases with time nMOS is at the saturation when Vout changes from VDD to VDD/2 ② tpLH: pull-up delay time Vin switches from VDD to 0, Vout increases with time. pMOS is at the saturation when Vout changes from 0 to VDD/2. I CL dV dt t CL V I DS t pLH CL (Vdd / 2) ( I DS , SAT ) p , t pHL CL (Vdd / 2) ( I DS , SAT ) n Propagation delay Simple timing model tp t pLH t pHL 2 Simple inverter model Reff ; effective on-resistance of transistor CL ; load capacitance Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <20> Switching Time Analysis (1) VDD VDD tPLH VOLè VDD/2 VOH Vin Iout Vout VOH è VDD/2 ILH VOL CL CL tPHL VOH IHL CL VOL Assumption dV C L dV I CL dt dt I ⇒ rising & falling time of input signal is zero. VDD 2 C L dV dt I t PHL CL VDD dV I VDD 2 t PLH CL dV I 0 t PLH t PHL t P 2 Average propagation delay Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <21> Switching Time Analysis (2) I CL dV C V t L dt I avg C L VDD 2 I HL C V 2 L DD I LH t PHL t PLH I avg ; charging or discharging average current t P t PLH t PHL 2 For deep submicron device, nMOS and pMOS remain in saturation region for all times during switching VDD → VDD /2 and VDD/2 → VDD, respectively. CL VDD 2 CL VDD 2 t PHL , t PLH I Dsat,n I Dsat, p If we model a transistor as a resistor, tPHL = 0.69RNCL and tPLH = 0.69RPCL. RN V 2 VDD 2 L L , RP DD RN Reqn , RP Reqp 0.7 I Dsat, p 0.7 I Dsat,n W p W n Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <22> Circuit Performance Index (3) Power Consumption Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <23> Power Dissipation of CMOS VLSI Power Dissipation P I VDD Ptotal Pstatic Pdynamic 2 C VDD 2 Pdynamic C VDD f T [ J / s] [W ] Due to the charging and discharging of capacitances Power dissipation increases linearly with switching frequency. Pstatic I DC I leakage VDD (T. Sakurai, ISSCC2003) Due to subthreshold leakage , pn junction leakage, etc ; Cannot be ignored in VLSI containing millions of transistors Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <24> Dynamic (switching) Power (1) Total charge supplied by VDD and drained to GND ; Average current ; I avg Q Tavg C L VDD f avg Q CL VDD 2 Pdynamic I avg VDD C L VDD f avg 2 Pdynamic 01 C L VDD f CLK Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <25> Dynamic (switching) power (2) VDD-VT Vin Ishort Practical dynamic power is larger than Due to the short circuit power dissipation t sc t scr t scf PSC I SCVDD t I SC sc I SC ,avg T PSC t sc I SC ,avg VDD t sc I SC ,avgVDD f CLK T 2 t sc I SC ,avg CscVDD PSC CscVDD f CLK 2 Csc scCL PSC scC LVDD f CLK 2 2 2 Pdynamic 01CLVDD fCLK scCLVDD fCLK CLVDD fCLK Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <26> Static (standby) Power Critical in low-power battery-operated portable devices Sources of static power dissipation q V V V • Subthreshold leakage I sub I s e • • GS T nkT o ffset 1 e qVDS kT Junction leakage DC current flow in ratioed logic such as pseudo-nMOS logic Pstatic I leak VDD I subthreshold I juncton VDD for CMOS Subthreshold leakage can be reduced by • Dynamically controlling VT ; by controlling the substrate bias, higher VT during standby and normal VT during normal operation • Reduction of VDS during standby ; series transistor to the pull-up and pull-down paths for smaller VDS across each transistor, called source degeneration Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <27> TCAD simulation Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <28> TCAD simulation n-MOSFET device structure MOSCAP structure n-MOSFET circuit :transfer curve p-MOSFET device structure p-MOSFET circuit :transfer curve Inverter circuit Inverter circuit : VTC : Transient curve Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <29> Structure file tdr file <n-MOSFET structure> MOSFET information (Ex : electric field, doping concentration, EBD, etc…) Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <30> 2-D structure information <Total current density> <Electric field & mesh information> Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <31> 1-D structure information Dimension cutting Doping concentration Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <32> 1-D structure information Electric field Energy band diagram Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <33> Data export Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <34> Data export <Xftp> Server connection STDB folder Saved folder Data export to my computer Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <35> Homework Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <36> CMOS Inverter Example #1. Nsub, Lg variation 1. [Table #1]에 주어진 공정변수 변화(Nsub, Lg)에 따라 아래의 소자변수를 비교하고 이유에 대해 논하시오. (Lg variation : short channel effect 관점) (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) [Table #1] Process variations Nsub [cm-3] Reference 𝟕 × 𝟏𝟎𝟏𝟕 Data #1 𝟏 × 𝟏𝟎𝟏𝟕 Data #2 1× 𝟏𝟎𝟏𝟖 Process variations Lg [nm] Reference 𝟔𝟓 Data #1 𝟒𝟎 Data #2 𝟐𝟎𝟎 (4) Off current (Ioff) (5) GIDL current (IGIDL) (6) DIBL factor (𝛿 ) (VDS=0.2, 1.2V) Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <37> CMOS Inverter 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교하고 이유에 대해 논하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <38> CMOS Inverter Example #2. Npg variation [Table #2] 1. [Table #2]에 주어진 공정변수 변화(Npg)에 따라 아래의 소자변수를 비교하고 이유에 대해 논하시오. Process variations Npg [cm-3] Reference 𝟏 × 𝟏𝟎𝟐𝟎 Data #1 𝟏 × 𝟏𝟎𝟏𝟗 Data #2 𝟏 × 𝟏𝟎𝟐𝟏 (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) (4) Off current (Ioff) (5) GIDL current (IGIDL) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교, 설명하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <39> CMOS Inverter Example #3. Xj,SD, Lg variation 1. [Table #3]에 주어진 공정변수 변화(Xj,SD, Lg)에 따라 아래의 소자변수를 비교하고 이유에 대해 논하시오. (Lg variation : short channel effect 관점) (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) (4) Off current (Ioff) (5) GIDL current (IGIDL) (6) DIBL factor (𝛿 ) (VDS=0.2, 1.2V) [Table #3] Process variations Xj,SD [nm] Reference 𝟏𝟐𝟎 Data #1 60 Data #2 180 Process variations Lg [nm] Reference 𝟔𝟓 Data #1 𝟒𝟎 Data #2 𝟐𝟎𝟎 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교하고 이유에 대해 논하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <40> CMOS Inverter Example #4. Nhalo, Lg variation [Table #4] Process variations Nhalo [cm-3] Reference 3× 𝟏𝟎𝟏𝟕 Data #1 0 (No halo) Data #2 𝟏 × 𝟏𝟎𝟏𝟖 Process variations Lg [nm] Reference 𝟔𝟓 (2) Subthreshold slope (SS) Data #1 𝟒𝟎 (3) On current (Ion) Data #2 𝟐𝟎𝟎 1. [Table #4]에 주어진 공정변수 변화(Nhalo, Lg)에 따라 아래의 소자변수를 비교하고 이유에 대해 논하시오. (Lg variation : short channel effect 관점) (1) Threshold voltage (VT) (4) Off current (Ioff) (5) GIDL current (IGIDL) (6) DIBL factor (𝛿 ) (VDS=0.2, 1.2V) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교하고 이유에 대해 논하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <41> CMOS Inverter Example #5. Tox, Lg variation 1. [Table #5]에 주어진 공정변수 변화(Tox, Lg)에 따라 아래의 소자변수를 비교하고 이유에 대해 논하시오. (Lg variation : short channel effect 관점) (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) (4) Off current (Ioff) (5) GIDL current(IGIDL) (6) DIBL factor (𝛿 ) (VDS=0.2, 1.2V) [Table #5] Process variations Tox [nm] Reference 𝟏. 𝟓 Data #1 3 Data #2 Process variations 6 Lg [nm] Reference 𝟔𝟓 Data #1 𝟒𝟎 Data #2 𝟐𝟎𝟎 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교하고 이유에 대해 논하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <42> CMOS Inverter Example #6. Wn : Wp variation 1. [Table #6]에 주어진 공정변수 변화(Wn : Wp)에 따라 아래의 소자변수를 비교, 설명하시오. (1) Threshold voltage (VT) [Table #6] Process variations Wn : Wp Reference 𝟏 ∶ 𝟐. 𝟓 Data #1 1:1 Data #2 1:4 (2) Subthreshold slope (SS) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교, 설명하시오. (3) On current (Ion) (1) Noise margin (NM) (4) Off current (Ioff) (5) GIDL current(IGIDL) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <43> CMOS Inverter Example #7. Cload variation [Table #7] 1. [Table #7]에 주어진 공정변수 변화(Cload)에 따라 아래의 소자변수를 비교, 설명하시오. Process variations Cload Reference 1 × CMOS Data #1 0.1 × CMOS Data #2 10 × CMOS (CMOS = 2.1fF) (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교, 설명하시오. (4) Off current (Ioff) (1) Noise margin (NM) (5) GIDL current(IGIDL) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <44> CMOS Inverter Example #8. εox variation [Table #8] 1. [Table #8]에 주어진 공정변수 변화(εox)에 따라 아래의 소자변수를 비교, 설명하시오. (1) Threshold voltage (VT) Process variations Oxide material (εox) Reference SiO2 (3.9) Data #1 HfO2 (22) Data #2 Si3N4 (7.5) (2) Subthreshold slope (SS) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교, 설명하시오. (3) On current (Ion) (1) Noise margin (NM) (4) Off current (Ioff) (5) GIDL current(IGIDL) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <45> CMOS Inverter Example #9. qφm variation [Table #9] 1. [Table #9]에 주어진 공정변수 변화(qφm)에 따라 아래의 소자변수를 비교, 설명하시오. Process variations Reference Data (1) Threshold voltage (VT) (2) Subthreshold slope (SS) (3) On current (Ion) (4) Off current (Ioff) (5) GIDL current(IGIDL) qφm nMOS : Polysilicon (4.05) pMOS : Polysilicon (5.16) nMOS : Molybdenum (4.53) pMOS : Copper (4.7) 2. 소자변수 변화의 관점에서 아래의 회로 성능지수를 비교, 설명하시오. (1) Noise margin (NM) - VIL, VIH, NML, NMH (2) Propagation delay - tpHL, tpLH, tp, tf, tr (3) Power consumption - Pdynamic, Pstatic Semiconductor devices & !ntegrated circuits Lab. @ Kookmin Univ. <46>