Download Negative Angle Identities Co-function Identities If A + B = Addition

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Negative Angle Identities
sin(- ! ) = - sinθ
cos(- ! ) = cosθ
tan(- ! ) = - tanθ
csc(- ! ) = - cscθ
sec(- ! ) = secθ
cot(- ! ) = - cotθ
Addition and Subtraction Identities
Co-function Identities If A + B = π2
sin A = cos B
sec A = csc B
tan A = cot B
Quotient Identities
1
sin !
1
secθ =
cos !
sin (A + B) =
sin A cos B + cos A sin B
cos (A + B) =
cos A cos B – sin A sin B
tan (A + B) =
tan A + tan B
1 – tan A tan B
Pythagorean Identities
sin (A – B) =
sin A cos B – cos A sin B
sin θ + cos θ = 1
cos (A – B) =
cos A cos B + sin A sin B
1 + tan θ = sec θ
tan A – tan B
1 + tan A tan B
tan (A – B) =
Double Angle Identities
cscθ =
2
tanθ
=
cotθ =
2
2
1 + cot θ = csc2θ
Half-Angle Identities
=
±
1 – cos !
2
2
cos
!
2
=
±
1 + cos !
2
= 2cos θ -- 1
tan
!
2
=
±
1 – cos !
1 + cos !
cos 2θ
= cos θ -- sin !
2
2
cos !
sin !
2
!
2
= 2sinθ cosθ
=
2
sin
sin 2 θ
1
tan !
= 1 – 2sin2θ
tan 2 !
=
2tan !
2
1 – tan !
Product Identities
sinAcosB
=
cosAsinB
=
cosAcosB
=
sinAsinB
=
( sin (A + B) + sin (A – B) )
1
( sin (A + B) – sin (A – B) )
2
1
( cos (A + B) + cos (A – B) )
2
1
( cos (A – B) – cos (A + B) )
2
1
2
Sum Identities
sinA + sinB
sinA – sinB
cosA + cosB
cosA – cosB
( A +2 B
A+B
= 2cos(
2
A+B
= 2cos(
2
A+B
= - 2sin(
2
=
2sin
)cos( A 2– B
)sin( A 2– B
)cos( A 2– B
)sin( A 2– B
)
)
)
)
THE UNIT CIRCLE
(0,1)
!
( ,
1
2
( ,
2
2
( , )
1
2
3
2
(- 1,0)
( ,
3
2
2
2
)
3
2
3!
4
2
)
!
2!
3
( ,
1
2
3
!
3
2
)
( , )
2
2
4
5!
6
( , )
!
3
2
6
1
2
0 (1,0)
!
1
2
2
2
)
7!
6
( , )
2
2
2
2
11!
6
5!
4
( ,
1
2
7!
4
4!
3
3
2
)
5!
3
( ,
1
2
3!
2
3
2
( , )
3
2
1
2
( , )
2
2
2
2
)
(0,- 1)
sin ! =
TRIGONOMETRIC DEFINITIONS
SPECIAL ANGLE TRIANGLES
opposite
y
=
r hypotenuse
2
adjacent
x
cos ! = =
r hypotenuse
tan ! =
y opposite
=
x adjacent
θ
x
1
30°
1
3
or if it is the unit circle,
r=1 so
45°
60°
1
2
2
1
2
30°
45°
y
60°
2
1
45°
1
r
45°
2
2
3
2
Related documents