Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Dr. Pere Romea Department of Organic Chemistry Sky and Water I Maurits Cornelis Escher, 1938 6. Functional Group Interconversion Organic Synthesis 2014-2015 Autumn Term Carbon Backbone & Functional Groups The synthesis of an organic compound must pay attention to ... Carbon backbone Functional groups (Chapters 2–4 ) Functional Group Interconversion (FGI) I. Nucleophilic Substitutions Electrophilic Additions to C=C Addition-Eliminations on Carboxylic Acids and Derivatives II. Reductions Mechanism!!! Pere Romea, 2014 III. Oxidations 2 Nucleophilic Substitutions The nucleophilic substitutions involve the interconversion of functional groups bound to sp3 carbonis X + Nu Nu + X Csp3 RX Electrophile Pere Romea, 2014 Leaving group Nucleophile 3 Chap. 15 Nucleophilic Substitutions Two model mechanisms, called SN1 i SN2, are used to explain the nucleophilic substitutions X + Nu Nu + X Unimolecular (SN1) or bimolecular (SN2) nucleophilic substitution? A slightly different model, called SN2’, may be useful in substitutions on allylic substrates X + Nu Nu 4 + X Pere Romea, 2014 Nucleophilic Substitutions and FGI There are three main sources to carry out FGI through nucleophilic substitutions: sulfonates, alcohols, and alkyl halides Sulfonates Alcohols Alkyl halides X: I, Br, Cl Nu R–OSO2R’ Nu R–OH Nu R–X 5 R–Nu R–Nu R–Nu Pere Romea, 2014 Nucleophilic Substitutions and FGI A wide array of structures can be synthesized from sulfonates and alkyl halides through nucleophilic substitution of X = OSO2R, I, Br, Cl in C–C bond forming reactions and FGI R Y R R R OH R R Y N H 2O or OH R OR ROH or RO CN R X O N3 O R N3 NH3 RSH or RS R NH 2 Pere Romea, 2014 O R H 2S or HS R O R R SH R SR 6 Nucleophilic Substitutions and FGI How easy is to interconvert sulfonates, alcohols, and alkyl halides? Sulfonates Alcohols Alkyl halides X: I, Br, Cl Nu R–OSO2R’ Nu R–OH Nu R–X 7 R–Nu R–Nu R–Nu Pere Romea, 2014 Alcohols and Sulfonic Esters Conversion of alcohols into sulfonic esters OH + pyridine RSO2Cl or (RSO 2 )2O CH 2Cl 2 or Et2O 0 °C – rt Mesyl chloride MsCl MeSO2Cl Tosyl chloride TsCl p-MePhSO2Cl Triflic Anhidride Tf2O (CF3SO2)2O OSO 2R Mesylate Tosylate Triflate – Primary and secondary ROH OK, but the reaction is sensitive to steric hindrance OH H Me Me TsCl, pyr Me Me – The reaction does not affect the C–O bond: the configuration of the carbon remains the same – Mesylates and tosylates are largely employed.Triflates are the most reactive sulfonates – Rearrangements of the carbon backbone are not frequent 8 Pere Romea, 2014 Sulfonic Esters and Alkyl Halides Conversion of sulfonate into alkyl halides X OH OH X SN2 X: Cl, Br, I 1) MsCl, Et3N, CH2Cl2 Cl 2) LiCl, DMF Pr Pr 83% Ph OH Ph TBDPSO 1) TsCl, pyr, CH2Cl2 2) LiBr, DMF 89% OH 1) MsCl, Et 3N, CH 2Cl 2 2) Lil, acetone Ph Br Ph TBDPSO I 94% 9 Pere Romea, 2014 Alcohols and Alkyl Halides Conversion of alcohols into alkyl halides Sulfonates R–OSO2R’ R’SO2Cl Alcohols X– R–OH ? Alkyl halides X: I, Br, Cl R–X 10 Pere Romea, 2014 Alcohols and Alkyl Halides Conversion of alcohols into alkyl halides X OH X: Cl, Br, I Reagents & Conditions Alcohols Mechanism HCl conc Tert SN1 (racemization) HCl/ZnCl2 (Lucas reagent) PCl3 SOCl 2 ,1,4-dioxane SOCl 2 , non nucleophilic solvent Prim & Sec Prim & Sec Prim & Sec Prim & Sec SN2 (inversion) SN2 (inversion) SN2 + SN2 (retention) SN2 (inversion) HBr conc Tert SN1 (racemization) HBr conc, ∆ PBr3 Prim Prim & Sec S N2 SN2 (inversion) P/I2 Prim & Sec SN2 (inversion) 11 Pere Romea, 2014 Alcohols and Alkyl Halides Problem! Too harsh experimental conditions: mixture of mechanisms and transpositions Br H OH OH OH2 SN2 Br single OH2 H Br Br SN1 Br 86% Br 14% Cl OH H Pere Romea, 2014 Cl OH2 12 single Alcohols and Alkyl Halides More selective transformations are required … The most used options are based on the conversion of alcohols into alkoxyphosphonium salts, highly reactive in SN2 substitutions Ph3P + E–Nu Ph3P E Ph3P E Nu Ph3P O HO + Ph3P H E + + Nu HE H Alkoxyphosphonium salt Ph3P O + Nu Ph3P=O H Nu + H Alkoxyphosphonium salt 13 Pere Romea, 2014 Alcohols and Alkyl Halides Ph3P / X2 : Ph3P / I2, Ph3P / Br2, Ph3P / Cl2 Ph3P + Br–Br Ph3P Ph3P – HBr Br + HO H Br – Br Br + Br Ph3P O Ph3P Br – Ph3P=O H Br H Br SN2 This transformation is very useful for secondary alcohols and those systems that easily produce transpositions, as neopentylic alcohols The control on the configuration is very good. Br + 11% Br + PBr3 Br 26% 90% OMe O R O OH OH R O Br 85% Br 63% Ph3P, Br2 O OH Ph3P/Br2 14 OBn OMe Ph 3P, I 2 I Imidazole Et 2O, rt 96% OBn Alcohols and Alkyl Halides Since chlorine (Cl2) is a gas difficult to handle .... HO Ph3P + Cl–CCl3 – CCl3 H Ph3P Cl – HCl – Ph3P=O Ph3P O H carbon tetrachloride O Ph3P + Cl OH H O Cl CCl3 Cl Cl hexachloroacetone CCl3 Cl OH Ph3P/Cl2 Cl Cl Cl Ph3P/CCl4 Cl 70% 92% Ph3P/CCl3COCCl3 OH Cl 99% 15 Pere Romea, 2014 Nucleophilic Substitutions and FGI Sulfonates Alcohols Alkyl halides X: I, Br, Cl Nu R–OSO2R’ Nu R–OH Nu R–X 16 R–Nu R–Nu R–Nu Pere Romea, 2014 Carbon Nucleophiles O R NH2 Amine 1 R O OH R Carboxylic Acid Red LiAlH4 O H Aldehyde Hydrolisis H3O+ Me Methyl ketone Hydration cat Hg2+, H2O Red DIBALH R CN R C CH +C Attention! Alkyl halides are very useful for the construction of C–C bonds R +2C R X 17 R OH Pere Romea, 2014 Nitrogen Nucleophiles: Primary Amines The alkylation of ammonia, NH3, is not easy ... R X NH3 R NH2 R2 NH R3 N R NH3 X R X R2 NH2 X R X R3 NH X R X R4 N X – HX + HX – HX R2 NH + HX – HX + HX Primary Amine R NH2 R3 N Secondary Amine Tertiary Amine Ammonium Salt Such an alkylation only becomes efficient when the resulting amine is much less nucleophile than the initial one, for steric or electronic reasons CO2Et H2N CO2Et 1) RCH2Cl 2) NaHCO3 R: C15H31 CO2Et 1) Br NH R N H 18 2) NaHCO3 CO2Et N Pere Romea, 2014 Nitrogen Nucleophiles: Primary Amines Potassium phthalimide, PhthNK O O Br N K Ph Ph NaOH N H2N 95% SN2 O Ph O Gabriel synthesis of amines Potassium phthalimide, pKa 8.3 Azide, N3– The azide anion is an excellent nucleophile that participates in a large number of SN2 processes The reduction of the azide group affords a primary amine I Bu NaN3 DMSO, Δ Bu N3 Bu NH2 90% O O OTBDPS OH O 1) MsCl, Et3N 2) NaN3, DMF 85% O OTBDPS N3 19 Nitrogen Nucleophiles: Primary Amines Mitsunobu conditions: Ph3P / DEAD / HN3 or DPPA [(PhO)2PON3] Ph3P, EtO2C N N CO2Et OH H Ph3P N N CO2Et Ph3P EtO2C Ph3P OH H N N N3 + EtO2C N N CO2Et H N3 H H N N CO2Et EtO2C CO2Et O PPh3 H EtO2C (PhO)2PO N3 HN3 o (PhO)2PON3, (PhO)2 O P DPPA N3 N N EtO2C O PPh3 N N EtO2C CO2Et H H HN3 N N H EtO2C N3 20 + + H CO2Et CO2Et + H N3 O=PPh3 Pere Romea, 2014 Nitrogen Nucleophiles Reduction LiAlH4, H2 cat, Ph3P/H2O O R N R1 H Amide R NH2 R Amine 1 Mitsunobu Ph3P/DEAD/ HN3 or DPPA SN2 N3– R O X OSO2R' O Ph3P, DEAD, HN3 OH O 97% O N Bn O CH2Cl2, 0 °C Bn O R O N OH Azide SN2 Phthalimide O R N3 O N N3 Bn O N H Ph 1) H2, Pd/C, THF/MeOH/TFA, ta 2) PhCOCl, Et3N, CH2Cl2, 0 °C 97% 21 Oxygen Nucleophiles: Alcohols The most simple nucleophile: H2O / OH– H2O, OH– X OH X: Cl, Br, I This is a rare transformation in which... ... tertiary halides, R3C–X, react with H2O (solvolysis) through SN1 and ... the secondary and primary ones, R2CH–X i RCH2–X, with OH–/H2O through SN2 In both situations E1 and E2 eliminations are competing reactions No eliminations can occur at this benzylic position Me NC Cl OH Cl2 K2CO3 hν H2O Radical chlorination NC 85% 22 NC Pere Romea, 2014 Oxygen Nucleophiles: Ethers Alkoxydes, RO–: Williamson Synthesis RO – X H SN2 RO H X: Cl, Br, I Only on 1ary substrates to avoid E2 eliminations ... and the most successful deconnections are applied to activated systems Ar O + XCH2R2 R1 NO2 NO2 OH BuBr, K2CO3 H2O 80% OBu O R2 R1 O + MeX o BnX O O O O H HO 23 O O 1) NaH, THF 2) BnCl, Δ 95% O O H BnO O O Pere Romea, 2014 Oxygen Nucleophiles: Esters Carboxilates, RCO2– RCO2– X H RCO2 X: Cl, Br, I, OSO2R SN2 H They are usually applied to 1ary substrates to avoid E2 eliminations O OK + O 18-crown-6 Br O O 95% Br O Br why KF? O O O CO2H O O MeI, KF DMF O O O CO2Me O O 84% 24 Attention: interconversion of carboxílic acids and derivatives Oxygen Nucleophiles: Esters Mitsunobu conditions: Ph3P / DEAD / RCO2H Ph3P, EtO2C N N CO2Et OH H Ph3P N N CO2Et Ph3P EtO2C OH Ph3P H N N CO2Et N N EtO2C H N N EtO2C OH Pere Romea, 2014 N N SN2 H CO2Et EtO2C EtO2C O RCO2 RCOOH CO2Me CO2Et + O PPh3 H H RCO2H CO2Et RCO2 H Ph3P, DEAD PhCO2H 89% RCO2 H PhCO2 O CO2Me 25 Oxygen Nucleophiles Configuration inversion SN2 RCO2– OH H H Hidrolysis OH– OSO2R' RCO2 Mitsunobu Ph3P/DEAD/RCO2H OH H H Hidrolysis OH– RCO2 H HO HO H H O OH O Ph Ph 3P, DEAD OH Ph O2N p-O2NPhCO 2H KOH Ph MeOH 99% overall 26 Pere Romea, 2014 Phosphorus Nucleophiles: in Route to Wittig Reactions Phosphines are excellent nucleophiles because they are less basic than amines and the phosphorus atom is very polarizable. Moreover, E2 reactions do not compete with SN2 because they are weak bases R1CH 2–X R1CH + PR3 phosphine B 2–PR3 X phosphonium salt Ph3P + OEt Ph3P R1CH PR3 phosphorus ylide Attention: Wittig reaction O O Br R1CH–PR3 NaOH OEt O Ph3P OEt Br Ph3P + Br OPh Ph3P BuLi OPh Ph3P OPh Br 27 Attention: no E2 occurs Ph3P OPh Phosphorus Nucleophiles: in Route to Wittig Reactions Phosphites are also good nucleophiles and react with alkyl halides: Michaelis-Arbuzov reaction RR (R2CHO)3P + R1–X H R1 OCHR2 P O OCHR2 O (R2CHO)2 X alkyltrialkoxyphosphonium halide phosphite P R1 alkylphosphonate Attention: Horner-Wadsworth-Emmons reaction O (EtO)3P + Br Δ OEt O (EtO)2P EtBr O EtO OEt O (EtO)2P O O O OEt (EtO)2P Pere Romea, 2014 28 O (EtO)2P OEt O OEt Sulfur Nucleophiles: Thiols The easiest option is troublesome ... R R–X + HS –H SH R R–X S R S R +H S thiourea H2N NH2 NH2 H X S NH2 O H H thioacetate 1) Thiourea C10H 21 2) NaOH HS H O S Br NaOH SH NaOH S or LiAlH4 AcSCs Br C10H 21 i-Pr 80% 29 H DMF 84% H i-Pr SAc Pere Romea, 2014 Sulfur Nucleophiles: Thioethers Thiolates are the best option since they are excellent nucleophiles ... R1 S R1–SH + OH SH NaOH X–R2 R1 S Br S R2 S 95% O Me HO N OMe O MsCl, Et3N CH2Cl2 100% BnSH, K2CO3 Me MsO O N OMe CH3CN 80% Me BnS N OMe Weinreb Amide O EtMgBr BnS 30 Pere Romea, 2014 Carbon Backbone & Functional Groups The synthesis of an organic compound must pay attention to ... Carbon backbone Functional groups (Chapters 2–4 ) Functional Group Interconversion (FGI) I. Nucleophilic Substitutions Chap. 19 Electrophilic Additions to C=C Addition-Eliminations on Carboxylic Acids and Derivatives II. Reductions Mechanism!!! Pere Romea, 2014 III. Oxidations 31 Hydroboration of C=C Borane, BH3, as a reacting species Lewis Base H H H B B H R H 2 H B H H H X R Lewis Acid C C BH3 C δ− δ+ H H B H C C C δ+ δ− π HOMO R X H B H H H3B· SMe2 H3B· OEt2 H3B· THF LUMO H B H H R BH2 H C C syn Addition Cyclic transition state 4 centers, 4 electrons The regiochemistry for the addition of BH3 to an olefin is controlled by steric as well as electronic factors: the boron atom binds to the less substituted carbon atom 32 Pere Romea, 2014 Hydroboration of C=C Additions of BH3 to olefins produce boranes R BH3 BH2 R R R Alkylborane H B R R R R Dialkylborane B R Trialkylborane – The appropriate choice permits to obtain a wide array of alkylboranes 3 + BH3 2 + BH3 + BH3 B Sia2BH B H BH2 ThxBH2 H + Pere Romea, 2014 BH3 B 9-BBN 33 Hydroboration of C=C – Steric effects rule the reactivity H R H R > H H R H H > H H R > R R R R > R R R H > R R H H ... the regioselectivity, BH3 94 80 Sia2BH 99 98 9-BBN 99.9 98.5 ... and the stereoselectivity 99 57 97 99.5 R2BH 99.8 H BR2 + H BR2 34 % atack B to the less substituted carbon atom BH3 72 28 9-BBN 97 3 Hydroboration of C=C Protonolysis: synthesis of alkanes R BH3 RCO2H R B 3 R H Δ 3 Trialkylborane Alkane Conversion of trialkylboranes into alcohols: H2O2/NaOAc, ... R HO O R B R R B R O R HO – HO RO R B R RO HO OR – BO33 3 ROH Borate – The migration does not produce the inversion of the configuration Hidrolysis H 1) B2H6 2) H2O2, OH– 35 OR B 85% OH It looks like an anti-Markovnikov hydration with a syn stereochemistry Pere Romea, 2014 Hydroboration of C=C Hidroboration of alkynes R1 R2 L2B H L2B R1 H RCO2H H H Δ R1 R2 H2O2, OH– HO R2 R1 H O R2 R1 (HO)2B H2O R1 1) Alquè Z R2 H R2 Vinilboronic acid O B H O OH B OH 2) H2O Br Pd(0) cat 75% Suzuki Coupling 36 Pere Romea, 2014 Dr. Pere Romea Department of Organic Chemistry The moneychanger and his wife Marinus Claesz van Reymerswaele, 1539 6. Functional Group Interconversion Organic Synthesis 2014-2015 Autumn Term Carboxylic Acids and Derivatives Carboxylic acids Derivatives of carboxylic acids O O R1 R1 OH O R1 O Cl R1 O O O R2 R1 O R1 N3 O SR2 R1 L O OR2 R1 N R2 R3 Acid chloride Anhydride Acyl azide Thioester Ester Amide Nitrile R1 C N All these FG participate in reactions that can be understood using the addition-elimination mechanism 2 Pere Romea, 2014 Addition-Elimination Mechanism Addition-elimination mechanism Addition O Trigonal Planar R1 Nu L Elimination Nu O R1 L Tetrahedral O R1 Nu + L Trigonal Planar The requirements for a smooth process are … a) RCOL must be a good electrophile, b) Nu must be a good nucleophile, c) L must be a better leaving group than Nu Remember: “The lower the pKa (HL), the better the leaving group” If the system is not reactive enough, it must be activated ... 3 Pere Romea, 2014 Addition-Elimination Mechanism Activation with a Lewis Acid, LA, ... O R1 O LA R1 L Activation LA LA HNu O R1 L Nu O R1 L LA –LH R1 LH Addition NuH LA O O –LA R1 Nu Nu Elimination Remember: Fischer esterification Activation with a Lewis Base, B, ... O R1 B O –L R1 L Activation NuH Nu O R1 B Addition O –B R1 B Nu Elimination Remember: synthesis of esters by addition of alcohols to acid chlorides in the presence of DMAP 4 Pere Romea, 2014 Addition-Elimination Processes O R1 H2O Cl Very easy Chap. 16 R2CO2– R2CO2– O R1 O O Chap. 10 H2O R2 O Easy R1 R2OH O R2OH R1 OH H2O OR2 Moderate R2R3NH O R2R3NH R1 5 N R3 R2 H2O Difficult Pere Romea, 2014 Addition-Elimination Processes ? O R1 Cl Chap. 16 R2CO2– R2CO2– O R1 ? O O Chap. 10 R2 O R1 R2OH ? O R2OH R1 OH OR2 R2R3NH O R2R3NH R1 6 N R3 R2 ? Pere Romea, 2014 Acid Chlorides from Carboxylic Acids Via SOCl2 o PCl5 O O O SOCl2 OH O PCl5 OH Cl 85% 93% O2N Cl O 2N Via (COCl)2 Useful for systems sensitive to acid media. It is usually used with the sodium salt (neutral media) or with catalytic amounts of DMF. O N Bn N HO O O O (COCl)2 CO2Na 83% 7 N Bn N HO O O COCl Pere Romea, 2014 Anhydrides from Carboxylic Acids Regioselectivity in the nucleophilic attacks to anhydrides O Regioselectivity is not a problem for the symmetric anhydrides R1 O O O R1 R1 O O Nu In mixed anhydrides the R2 group must prevent the nucleophilic attack R2 Nu The mixed anhydrides are usually prepared quantitatively from acid chlorides or other anhydrides. They are not isolated. O R1 O P O O PMBO OH H Nu O OBn HO Cl O PMBO PMBO O Nu Cl 95% PMBO PMBO O Cl Pere Romea, 2014 Cl O (OMe) O O Nu P Et 3N, DMAP THF–PhMe, rt O R1 Cl O (OMe) Cl Cl PMBO O Cl Cl O Yamaguchi Method O O O P (OMe) BnO O O Cl 8 O H Esters from Carboxylic Acids and Derivatives The retrosynthetic analysis shows two ways of deconnecting the ester group ... O R1 L + HOR2 b) O R1 O R2 a) O R1 Addition-elimination Processes + R2–X O SN2 Processes – Fischer Esterification X RCO2– – Using coupling agents as carbodiimides H X: Cl, Br, I, OSO2R RCO2 H – Acylation with acid chlorides or anhydrides OH RCOOH Mitsunobu RCO2H Pere Romea, 2014 9 H Ph3P, DEAD CH2N2 RCO2 RCO2 H HH H Esters through SN2 Transformations Synthesis of methyl esters by reaction with diazomethane Diazomethane is a highly volatile (it must be handled in etherial solutions), toxic, and explosive compound ... H H C N N H C N N H C N N H H The best leaving group O R O O H H C N N H O N N O R SN2 MeO Et2O O H O O 95% pKa 10 HH O CH2N2 O O – N2 H Acid-base O HO R HH pKa 16 PhOH + CH2N2 PrOH + CH2N2 PhOMe 10 PrOMe Pere Romea, 2014 Esters through Addition-Elimination Transformations Fischer esterification O R1 O H HOR2 + A problem O R1 O H H O H R1 O O H R1 H O H 2 HO O R R1 R1 OH H Activation O R1 O H H O R2 O –H R1 O R2 HO R2 O R1 H HO O 2 R H O + HOR2 O H R1 O R2 + H2O – Reversible reaction catalyzed by H+ – Excess of R2OH or removal of H2O are necessary to obtain esters in high yields O OH + MeOH solvent HCl cat Δ O O O OH OMe 95% 11 + HO Cl TsOH cat Δ –H 2O azeotropic 85% O Cl Pere Romea, 2014 Esters through Addition-Elimination Transformations Esterification with carbodiimides O O R1 H + R N C N R O Carbodiimide R1 R2 + O R N H N H R O O R1 + HOR2 O O H R1 R N C N R O O H R1 R R OH R N C N – Neutral and aprotic apolar medium – DMAP is usually used as catalyst TBSO NHR O NR R2 + R O N H TBSO DCC: DiCiclohexylCarbodiimide O OH N C N O + HO H R1 O N H R Good leaving group OMe H O OMe O O H O DMAP cat, CH2Cl2 12 97% H Pere Romea, 2014 Esters through Addition-Elimination Transformations Acylation with acid chlorides and anhydrides O R1 O Cl o O R1 R1 O Good leaving groups O R2OH R1 R3N O R2 O O O O Ac HO O PhCOCl pyr, DMAP cat Ac CH2Cl2 O O O 85% O O O O Ph CO2Me OH OH OH CO2Me Ac2O Et3N, DMAP cat OAc OAc CH2Cl2 95% 13 OAc Pere Romea, 2014 Esters through Addition-Elimination Transformations Acylation with mixed anhydrides O R1 Mixed anhydrides are usually prepared quantitatively from acid chlorides or other anhydrides. They are not isolated. O O P O (OMe) PMBO O PMBO O P O O2N Nu Shiina Method J. Org. Chem. 2004, 69, 1822 O O (OMe) H OBn HO PMBO O PMBO O Cl O P (OMe) BnO O PMBO 95% O PMBO Cl Me O Cl Cl Et3N, DMAP THF–PhMe, ta OH R1 O Nu Yamaguchi Method Cl Cl O Cl Cl O Cl O O Cl Nu Me O O Me O TBSO X X X: NO2 O Ph Pere Romea, 2014 OH + HO Ph Et3N, DMAP cat, CH2Cl2 92% TBSO Ph O O Ph 14 O H Lactones in Natural Products Lactones (cyclic esters) are a common structural motif in natural products OMe O HO O O OH Scytophycin C (20) O H O MeO MeO Octalactin A (8) N OH H O O HO OMe OH O O Erythromycin A (14) O Pere Romea, 2014 OH Bafilomycin A (16) OMe O O OMe O OH O HO HO O O NMe2 O O O OH O (C)n (C)n ? O OMe L O 15 HO OH OH Campagne, J. -M. Chem. Rev. 2006, 106, 911 & 2013, 113, PR1 Lactones in Natural Products The size of the ring determines the synthetic method ... Cyclization of γ- and ∂-hydroxy acids is straightforward … O OH γ O O OH Very easy O OH O Very easy O δ OH For 5- and 6-membered rings, both enthalpy and entropy OK !!! ... but as the size of the ring increases, the cyclization mets the selectivity problem O L (C)n OH k1 O O inter L (C)n O (C)n OH k2inter vintra >> vinter O k1intra k2intra O O (C)n monòmer vintra = k1intra [S] O O O dímer High dilution conditions are required as well as activation of the carboxylate group compatible with the OH group si k1intra k1inter Per a vintra >> vinter vinter = k1inter [S]2 vintra vinter 1 = [S] [S] 0 16 Synthesis of Macrolactones Mixed anhydrides (Yamaguchi and Shiina methods) met these conditions O O Cl O Cl O O Cl Cl 1) Et3N, THF, rt O O OH HOOC O 1) PhMe, DMAP, 60 °C [S] = 30 mM O O 78% Me O O O O O Me O O O OH HO X X: NO2 O O O X Et3N, DMAP, CH2Cl2, 40 °C [S] = 2.7 mM O O O O O O 42% 17 Pere Romea, 2014 Amides through Addition-Elimination Transformations The retrosynthetic analysis of amides also shows two options … b) O R1 L + HNR2R3 a) O R1 O R2 N R1 NR3 + R2–X R3 Addition-elimination processes SN2 Processes – Acylation with acid chlorides and anhydrides No very common, but N-substitutions using – Via coupling agents: carbodiimides, HATU sterically unindexed alkyl halides are useful options. Attention with E2 O N O H NaH, MeI N Me Benzè 18 Pere Romea, 2014 Amides through Addition-Elimination Transformations Acylation with acid chlorides and anhydrides O R1 O o R1 Cl O Good leaving groups O R1 O OH O R2R3NH R1 R3N N R3 R2 O 1) SOCl2 NH 2 2) NH 3 excess 70% O O Me N Me 2 eq Me2NH Cl 85% O HO NH2 Ac2O, pyr 90% 19 O HO + Me2NH2 Cl H N O Pere Romea, 2014 Amides through Addition-Elimination Transformations Synthesis of amides by using carbodiimides O O R1 H + R N C N R O Carbodiimide R1 R2 + N R R3 N H R N H O O R1 + HNR2R3 O O H R1 R N C N R O O H R1 R R2 NH R N C N – Neutral and aprotic apolar medium – DMAP is usually used as catalyst NHR O NR O R1 Good leaving group O R2 + N R3 R N H N H R R3 R2 HO O H N RO R1 H O N H DCC Coupling Boc O R2 H N RO R1 O N H Boc O TFA RO Deprotection R2 H N R1 O N H H Peptide synthesis 20 Pere Romea, 2014 Amides through Addition-Elimination Transformations Occasionally, O-acylisourea intermediates are not stable enough or produce the epimerization of the Cα center. Then, the addition of N-hydroxy derivatives transforms such intermediates into less reactive active esters with a beneficial effect on the overall efficiency O R1 NHR O O HOXt R1 NR O R N H R2 N H O NH R O Xt R1 N R2 R3 HOXt R3 HOXt O N N N N N N N OH HOBt OH HOAt 21 N OH O HOSu Pere Romea, 2014