Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Mid Semester Examination - December 2010. MAT 303 1.0 Classical Mechanics --------------------------------------------------------------------------------------------------------- Sample Solutions. --------------------------------------------------------------------------------------------------------- 1. A particle A of mass 3m is connected to a fixed point O by a light inextensible string of length a, and the particle B of mass m is connected to the particle A by another light inextensible sting of same length. The particles swing in a vertical plane such that both strings taut. At time t, OA and AB make small angles and with the downward vertical, respectively. Show that the kinetic energy and the potential energy of the system can be expressed as 1 1 T m a 2 4 2 2 2 and V mga 4 2 2 . 2 2 Find the Lagrangian of the system and the Lagrange’s equations. Determine the normal coordinates. Solution v A, O 2 a 2 2 v B , O 2 a cos a cos 2 a sin a sin 2 a 2 2 2a 2 cos a 2 2 . When and are small, v B , O 2 a 2 2 2a 2 a 2 2 . 5 1 1 3m a 2 2 m a 2 2 2a 2 a 2 2 . 2 2 1 m a 2 4 2 2 2 . 5 2 T 5 5 V 3mg a cos mg a cos a cos 1 mg a 4 2 2 5 2 1 1 5 L m a 2 4 2 2 2 mg a 4 2 2 2 2 L L ma2 4 and mag 4 ma4 mg 4 0 5 5 Equation (1) 4 a a 4 g 0 L L ma2 and mga ma m g 0 5 5 a a g 0 Equation (2) 5 Equation (1) + k . Equation (2) a4 k a1 k 4 g k g 0 Now, choose k such that 5 Equation (3) 4 k 1 k k2 4 k 2 . 4 k 5 5 When k 2 ; Equation (3) becomes 6 a 3a 4 g 2 g 0 . 2g 2 0 . so, 2 is a normal coordinate. 2 3a 5 When k 2 ; Equation (3) becomes 2a a 4 g 2 g 0 . 2g 2 0 . so, 2 is a normal coordinate. 2 a 2. 5 Define a canonical transformation. Show that 2k q 1 2 is a canonical transformation. P p k q 2 and Q tan 1 4k p Assuming that the generating function T of the form T qi , Qi , t satisfies that T T pi and Pi , find a generating function T for the above transformation. qi Qi Solution canonical transformation : A transformation that leaves the Hamilton’s equations invariant is called a canonical transformation. 2k q 1 2 5 p dq P dQ p dq p k q 2 d tan1 4k p 2k 1 2 2 p dq p k q 4k p 2 1 2 k q p dq q dp 2 p 2k p dq q dp 1 2 p dq p 4k 2 q 2 2 2 2 4k p 4 k q 1 p dq p dq q dp 2 5 1 pq p dq q dp d , an exact differential. 2 2 so, given transformation is a canonical transformation. 5 5 5 Given transformation can be expressed as p 2 k q cot Q and P 5 1 2k q cot Q 2 k q 2 4k k q 2 cot 2 Q k q 2 k q 2 cos ec 2Q pi T qi Pi 2kq cot Q 5 T T kq2 cot Q f Q ,t q T k q 2 cos ec 2Q kq2 cot Q f Q ,t Qi Q k q 2 cos ec 2Q kq2 cos ec 2 Q k q 2 cos ec 2Q kq2 cos ec 2 Q f Q ,t Q 5 5 5 f Q ,t f Q ,t 0 f Q ,t f t Q Q 5 T kq2 cot Q f t 5 State the Hamilton’s equations for a dynamical system. 3. A particle of mass m moves in an Oxy plane under the influence of a potential function V 2 k 2 m x 2 y 2 , where k is a positive constant. Obtain Hamilton’s equations for the particle. Initially, the particle is at the point 0 , 2k and moving in the positive Ox direction with speed 4 k 2 . Solve the Hamilton’s equations and determine the path of the particle. 5 Hamilton’s equations for a dynamical system are H H p i qi and 5 qi pi L 1 m x 2 y 2 2 k 2 m x 2 y 2 2 5 Generalized momenta are given by, px L L mx and p y my x y 5 5 5 H Hamilton’s equations 5 x 5 H p x 4 k 2 mx p x x 5 1 H y p y y m p y 5 5 H H p i becomes qi and qi pi H 1 x p x x p x m 1 px 2 p y 2 2 k 2 m x2 y 2 . 2m H p y 4k 2 my p y p y 5 1 1 p x 4 k 2 x and y p y 4 k 2 y . m m 5 5 5 5 x A1 cos 2kt B1 sin 2kt and y A2 cos 2kt B2 sin 2kt . Initial conditions are x 0 , y 2 k , x 4 k 2 and y 0 . x 0 A1 0 x 4 k 2 y 0 B2 0 y 2k A2 2k B1 2k x 2k sin 2kt and y 2 k cos 2 kt . x 2 y 2 4k 2 . Hence, path is a circle. 5 5 5 5 With polar coordinates (difficult) L 1 m r 2 r 2 2 2 k 2 m r 2 2 5 5 Generalized momenta are given by, pr L L mr and p mr 2 r 5 5 H 1 1 pr 2 p 2 2 k 2 m r 2 . 2 2m 2mr Hamilton’s equations 5 5 H H p i becomes qi and qi pi H 1 r pr r p r m 1 H p 2 p mr 5 H 1 p r p 2 4 k 2 mr p r 3 r mr 5 H p 0 p p p c0 constant. 5 5 Hence, mr 2 p co mr r p co 5 Initially, r 2k and r 4 k 2 m2k 4 k 2 co co 8 mk 3 Further mr 1 1 pr r and p 2 4 k 2 mr p r 3 m mr 1 mr 3 p 2 4 k 2 mr mr r 5 2 dr 1 8 mk 3 4 k 2 mr dr mr 3 dr 64 6 k 4k 2 r 3 dr r 1 2 32 r k 6 2k 2 r 2 c1 2 r2 Using initial conditions, 0 32 2k 2 Solve this and show that r 2k . 5 5 k 6 2k 2 2k 2 c1 c1 0 . 1 32 64 r 2 k 6 2k 2 r 2 r 2 k 6 4 k 2 r 2 2 r2 r2 Hence, path is a circle. 5 5 5 5