Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SIXTH EDITION Organic Chemistry Robert Thornton Morrison Robert Neilson Boyd New York University Prentice Hall, Englewood Cliffs, New Jersey 07632 Contents Preface xxiii Acknowledgments xxvii PART ONE The Fundamentals / Structure and Properties 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 Organic chemistry 7 The structural theory 3 The chemical bondbefore 1926 4 Quantum mechanics 5 Atomic Orbitals 6 Electronic connguration. Pauli exclusion principle 8 Molecular Orbitals 9 The covalent bond 9 Hybrid Orbitals: s/> 77 Hybrid Orbitals: sp2 13 Hybrid Orbitals: sp3 15 Unshared pairs of electrons 7 7 Intramolecular forces 20 Bond dissociation energy. Homolysis and heterolysis 21 Polarity ofbonds 23 Polarity ofmolecules 23 Structure and physical properties 26 Melting point 27 Intermolecular forces 28 Boiling point 30 Solubility 31 V CONTENTS 1.22 1.23 Acids and bases Isomerism 36 Methane 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2A3 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 3.4 3.5 3.6 3.7 3.8 3.9 3.10 Energy of Activation. Transition State Hydrocarbons 39 Structure of methane 40 Physical properties 41 Source 41 Reactions 42 Oxidation. Heat of combustion 42 Chlorination: a Substitution reaction 43 Control of chlorination 44 Reaction with other halogens: halogenation 44 Relative reactivity 45 Reaction mechanisms 45 Mechanism of chlorination. Free radicals 46 Chain reactions 48 Inhibitors 49 Heat of reaction 50 Energy of activation 57 Progress of reaction: energy changes 52 Rate of reaction 55 Relative rates of reaction 58 Relative reactivities of halogens toward methane 59 An alternative mechanism for halogenation 61 Structure of the methyl radical. jp 2 Hybridization 64 Transition State 65 Reactivity and development of the transition State 67 Chlorofluorocarbons and the ozone shield 69 Molecular formula: its fundamental importance 72 Qualitative elemental analysis 72 Quantitative elemental analysis: carbon, hydrogen, and halogen 73 Empirical formula 74 Molecular weight. Molecular formula 74 Alkanes 3.1 3.2 3.3 33 Free-Radical Substitution Classification by structure: the family 77 Structure ofethane 78 Free rotation about the carbon-carbon Single bond. Conformations. Torsional strain 79 Propane and the butanes 83 Conformations of n-butane. Van der Waals repulsion Higher alkanes. The homologous series 86 Nomenclature 87 Alkyl groups 88 Common namesof alkanes 90 IUPAC names of alkanes 90 CONTENTS 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 4 vii Classes of carbon atoms and hydrogen atoms 92 Physical properties 92 Industrial source 94 Industrial source vs. laboratory preparation 96 Preparation 97 The Grignard reagent: an organometallic Compound 99 Coupling of alkyl halides with organometallic Compounds 707 Reactions 702 Halogenation 704 Mechanismof halogenation 706 Orientation of halogenation 707 Relative reactivitiesof alkanestoward halogenation 709 Ease ofabstraction of hydrogen atoms. Energy of activation 770 Stability of free radicals 777 Ease offormation of free radicals 113 Transition State for halogenation 775 Orientation and reactivity 114 Reactivity and selectivity 775 Non-rearrangement of free radicals. Isotopic tracers 776 Combustion 775 The greenhouse efFect 779 Pyrolysis: cracking 720 Determination ofstructure 727 Analysisof alkanes 722 Stereochemistry I. Stereoisomers 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 Stereochemistry and stereoisomerism 725 Isomer number and tetrahedral carbon 726 Optical activity. Plane-polarized light 725 The Polarimeter 725 Specific rotation 729 Enantiomerism: the discovery 750 Enantiomerism and tetrahedral carbon 757 Enantiomerism and optical activity 755 Prediction of enantiomerism. Chirality 755 The chiral center 755 Enantiomers 756 The racemic modification 755 Optical activity: a closer look 759 Configuration 140 Specification of configuration: R and S 140 Sequence rules 141 Diastereomers 144 Meso structures 146 Specification ofconfiguration: morethan one chiral center 148 Conformational isomers 149 Reactions involving stereoisomers 750 Generation of a chiral center. Synthesis and optical activity 757 viii CONTENTS 4.23 4.24 4.25 4.26 4.27 4.28 5 Alkyl Halides 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 6 Reactionsofchiralmolecules. Bond-breaking 153 Reactionsofchiral molecules. Relating configurations 154 Optical purity 156 Reactions of chiral molecules. Generation of a second chiral center 756 Reactions of chiral molecules with optically active reagents. Resolution 158 Reactions of chiral molecules. Mechanism of free-radical chlorination 760 Nucleophilic Aliphatic Homolytic and heterolytic chemistry 765 Relative ratesofcompeting reactions 766 Structure. The functional group 767 Classification and nomenclature 765 Physical properties 769 Preparation 770 Reactions. Nucleophilic aliphatic Substitution 772 Nucleophilic aliphatic Substitution. Nucleophiles and leaving groups 775 Rate of reaction: efFect of concentration. Kinetics 777 Kinetics of nucleophilic aliphatic Substitution. Second-order and first-order reactions 7 78 Nucleophilic aliphatic Substitution: duality of mechanisms 7 79 The SN2 reaction: mechanism and kinetics 757 The SN2 reaction: stereochemistry. Inversion of configuration 182 The SN2 reaction: reactivity. Steric hindrance 755 The SNI reaction: mechanism and kinetics. Rate-determining step 755 Carbocations 797 Structure of carbocations 7 93 The SNI reaction: stereochemistry 194 Relative stabilities of carbocations 7 96 Stabilization of carbocations. Accommodation of Charge. Polar effects 799 The SNI reaction: reactivity. Ease of formation of carbocations 200 Rearrangement of carbocations 203 S„,2 BS. V 208 Analysisof alkyl halides 277 Alcohols and Ethers 6.1 6.2 6.3 6.4 6.5 Substitution Introduction 275 Structure of alcohols 214 Classification of alcohols 274 Nomenclature of alcohols 275 Physical properties of alcohols 275 CONTENTS ix 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 Industrial source 218 Fermentation of carbohydrates 219 Fuel from carbohydrates. Carbon dioxide balance 279 Ethanol 221 Preparation of alcohols 222 Reactionsof alcohols 224 Alcohols as acids and bases 227 Reaction of alcohols with hydrogen halides. Acid catalysis Formation ofalkyl sulfonates 233 Oxidationof alcohols 235 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 Structure and nomenclature of ethers 23 7 Physical properties of ethers 238 Industrial sources of ethers. Dehydration of alcohols Preparation of ethers 240 Preparation of ethers. Williamson synthesis 241 Reactionsof ethers. Cleavageby acids 242 Analysisof alcohols 243 Analysisof ethers 244 229 ETHERS 7 Role of the Solvent 7.1 12 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 8 Secondary Bonding Role of the solvent 249 Secondary bonding 250 Solubility: non-ionic solutes 252 Solubility: ionic solutes. Protic and aprotic solvents. Ion pairs 254 The SNI reaction: role of the solvent. Ion-dipole bonds 258 The SN2 reaction: role of the solvent. Protic and aprotic solvents 261 The SN2 reaction: phase-transfer catalysis 264 SN2 VS. SNI: effect of the solvent 267 Solvolysis. Nucleophilic assistance by the solvent 268 The medium: a message 271 Alkenes I. Structure and Preparation 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 238 Elimination Unsaturated hydrocarbons 273 Structure ofethylene. The carbon-carbon double bond 273 Propylene 276 Hybridization and orbital size 276 The butylenes 277 Geometrie isomerism 279 Higher alkenes 282 Namesof alkenes 282 Physical properties 283 The organic chemistry of vision 285 Industrial source 287 Preparation 287 Dehydrohalogenation ofalkyl halides: 1,2-elimination 290 Kinetics of dehydrohalogenation. Duality of mechanism 293 CONTENTS 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 The E2 mechanism 294 Evidence for the E2 mechanism. Kinetics and absence of rearrangements 294 Evidence for the E2 mechanism. Isotope effects 295 Evidence for the E2 mechanism. Absence of hydrogen exchange 297 Evidence for the E2 mechanism. The element effect 299 The E2 reaction: orientation and reactivity 300 The El mechanism 303 Evidence for the El mechanism 304 The El reaction: orientation 306 Elimination: E2 vs. El 308 Elimination vs. Substitution 308 Dehydration ofalcohols 310 9 Alkenes IL Reactions of the Carbon-Carbon Double Bond Electrophilic and Free-Radical Addition 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16 9.17 9.18 9.19 9.20 9.21 9.22 9.23 9.24 9.25 9.26 9.27 Reactions of alkenes 317 Reactions at the carbon-carbon double bond. Addition 317 Hydrogenation. Heat ofhydrogenation 323 Heat ofhydrogenation and stabilityof alkenes 326 Addition of hydrogen halides. Markovnikov's rule. Regioselective reactions 327 Addition of hydrogen bromide. Peroxide effect 330 Addition ofsulfuricacid 331 Addition of water. Hydration 332 Electrophilic addition: mechanism 332 Electrophilic addition: rearrangements 334 Electrophilic addition: orientation and reactivity 335 Addition of halogens 339 Mechanism of addition of halogens 340 Halohydrin formation: addition of the elements of hypohalous acids 342 Addition of alkenes. Dimerization 343 Addition of alkanes. Alkylation 344 Oxymercuration-demercuration 346 Hydroboration-oxidation 347 Orientation ofhydroboration 348 Mechanism ofhydroboration 349 Free-radical addition. Mechanism of the peroxide-initiated addition ofHBr 351 Orientation of free-radical addition 352 Other free-radical additions 355 Free-radical polymerization of alkenes 356 Hydroxylation. Formation ofl,2-diols 357 Cleavage: determination of structure by degradation. Ozonolysis 358 Analysisof alkenes 360 xi CONTENTS 10 Stereochemistry II. Stereoselective and Stereospecific Reactions 10.1 10.2 10.3 10.4 10.5 10.6 10.7 11 Organic chemistry in three dimensions 36 7 Stereochemistry of addition of halogens to alkenes. syn- and antiaddition 368 Mechanism of addition of halogens to alkenes 372 Stereochemistry of the E2 reaction. syn- and antt'-elimination 377 Stereospecific reactions 381 Stereoselectivity vs. stereospecificity 382 A look ahead 383 Conjugation and Resonance 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 Dienes The carbon-carbon double bond as a substituent 387 Free-radical halogenation of alkenes: Substitution vs. addition 388 Free-radical Substitution in alkenes: orientation and reactivity 390 Free-radical Substitution in alkenes: allylic rearrangement 392 Symmetry of the allyl radical 393 The theoryof resonance 394 The allyl radical as a resonance hybrid 395 Stability of the allyl radical 397 Orbital picture of the allyl radical 397 Using the resonance theory 399 Resonance stabilization of alkyl radicals. Hyperconjugation 401 The allyl cation as a resonance hybrid 402 Nucleophilic Substitution in allylic Substrates: SNI . Reactivity. Allylic rearrangement 404 Stabilization of carbocations: the resonance effect 406 Nucleophilic Substitution in allylic Substrates: SN2 407 Nucleophilic Substitution in vinylic Substrates. Vinylic cations 407 Dienes: structure and properties 409 Stability of conjugated dienes 410 Resonance in conjugated dienes 411 Resonance in alkenes. Hyperconjugation 413 Ease of formation of conjugated dienes: orientation of elimination 414 Electrophilic addition to conjugated dienes. 1,4-Addition 414 1,2- vs. 1,4-Addition. Rate vs. equilibrium 417 Free-radical polymerization of dienes. Rubber and rubber Substitutes 419 Isoprene and the isoprene rule 421 Analysisof dienes 421 12 Alkynes 12.1 12.2 12.3 Introduction 425 Structure ofacetylene. The carbon-carbon triple bond Higher alkynes. Nomenclature 428 425 xii CONTENTS 12.4 Physicalpropertiesofalkynes 428 12.5 Industrial source of acetylene 429 12.6 Preparationofalkynes 429 12.7 Reactionsofalkynes 430 12.8 Reduction of alkenes 433 12.9 Electrophilic addition to alkynes 434 12.10 Hydration of alkynes. Tautomerism 435 12.11 Acidity of alkynes. Very weak acids 436 12.12 Reactions of metal acetylides. Synthesis of alkynes 438 12.13 Formation of carbon-carbon bonds. Role played by organometallic Compounds 439 12.14 Analysis of alkynes 440 13 Cyclic Aliphatic Compounds 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 14 Open-chain and cyclic Compounds 443 Nomenclature 443 Industrial source 446 Preparation 447 Reactions 448 Reactions of small-ring Compounds. Cyclopropane and cyclobutane 449 Baeyer strain theory 450 Heats of combustion and relative stabilities of the cycloalkanes 450 Orbital picture of angle strain 453 Factors affecting stability of conformations 454 Conformations of cycloalkanes 455 Equatorial and axial bonds in cyclohexane 460 Stereoisomerism of cyclic Compounds: eis and trans isomers 463 Stereoisomerism of cyclic Compounds. Conformational analysis 466 Stereochemistry of elimination from alicyclic Compounds 471 Carbenes. Methylene. Cycloaddition 473 Addition of substituted carbenes. 1,1 -Elimination 476 Cyclic ethers 478 Crown ethers. Host-guest relationship 4 78 Epoxides. Structure and preparation 481 Reactions of epoxides 482 Acid-catalyzed cleavage of epoxides. awft'-Hydroxylation 483 Base-catalyzed cleavage of epoxides 485 Orientation of cleavage of epoxides 485 Analysis of alicyclic Compounds 487 Aromaticity 14.1 14.2 14.3 14.4 Benzene Aliphatic and aromatic Compounds 493 Structure of benzene 494 Molecular formula. Isomer number. Kekule structure 494 Stability of the benzene ring. Reactions of benzene 497 CONTENTS 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 xiii Stability of the benzenering.Heats of hydrogenation and combustion 498 Carbon-carbon bond lengths in benzene 499 Resonance structure of benzene 500 Orbital pictureof benzene 501 Representation ofthe benzene ring 503 Aromatic character. The Hückel 4w + 2 rule 504 Nomenclature of benzene derivatives 508 Polynuclear aromatic hydrocarbons. Naphthalene 510 Quantitative elemental analysis: nitrogen and sulfur 575 15 Electrophilic Aromatic Substitution 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 15.14 15.15 15.16 15.17 15.18 15.19 15.20 15.21 Introduction 577 Effect of substituent groups 579 Determination of orientation 520 Determination of relative reactivity 527 Classification of substituent groups 522 Orientation in disubstituted benzenes 522 Orientation and synthesis 524 Mechanism of nitration 525 Mechanism of sulfonation 527 Mechanism of Friedel-Crafts alkylation 528 Mechanism of halogenation 529 Desulfonation. Mechanism of protonation 529 Mechanism of electrophilic aromatic Substitution: a summary 530 Mechanism of electrophilic aromatic Substitution: the two steps 557 Reactivity and orientation 535 Theory of reactivity 536 Theory of orientation 538 Electron release via resonance 540 Effect of halogen on electrophilic aromatic Substitution 542 Relation to other carbocation reactions 544 Electrophilic Substitution in naphthalene 545 16 Aromatic-Aliphatic Compounds Arenes and Their Derivatives 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 The aromaticringas a substituent 549 Aromatic-aliphatic hydrocarbons: arenes 549 Structure and nomenclature of arenes and their derivatives 557 Physical properties 552 Industrial source of alkylbenzenes 555 Preparation of alkylbenzenes 556 Friedel-Crafts alkylation 557 Mechanism of Friedel-Crafts alkylation 558 Limitations of Friedel-Crafts alkylation 567 Reactions of alkylbenzenes 567 xiv CONTENTS 16.11 Oxidation of alkylbenzenes 563 16.12 Electrophilic aromatic Substitution in alkylbenzenes 564 16.13 Halogenation of alkylbenzenes: ring vs. side chain 565 16.14 Side-chain halogenation of alkylbenzenes 566 16.15 Resonance stabilization of the benzyl radical 568 16.16 Triphenylmethyl: a stable free radical 5 70 16.17 Stability of the benzyl cation 5 74 16.18 Nucleophilic Substitution in benzylic Substrates 5 75 16.19 Preparation of alkenylbenzenes. Conjugation with the ring 5 76 16.20 Reactionsof alkenylbenzenes 578 16.21 Addition to conjugated alkenylbenzenes 579 16.22 Alkynylbenzenes 580 16.23 Analysisof arenes 580 17 Spectroscopy and Structure 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 Determination of structure: spectroscopic methods 585 The mass spectrum 586 The electromagnetic spectrum 589 The infrared spectrum 590 Infrared spectra of hydrocarbons 592 Infrared spectra ofalcohols 594 Infrared spectra ofethers 596 The ultraviolet spectrum 597 The nuclear magnetic resonance (NMR) spectrum 600 NMR. Number of signals. Equivalent and non-equivalent protons 607 17.11 NMR. Positions of signals. Chemical shift 604 17.12 NMR. Peak area and proton counting 609 17.13 NMR. Splitting of signals. Spin-spin coupling 610 17.14 NMR. Coupling constants 620 17.15 NMR. Complicated spectra. Deuterium labeling 623 17.16 Equivalence of protons: a closer look 625 17.17 Carbon-13 NMR (CMR) spectroscopy 629 17.18 CMR. Splitting 630 17.19 CMR. Chemical shift 634 17.20 NMR and CMR spectra of hydrocarbons 639 17.21 NMR and CMR spectra ofalkylhalides 640 17.22 NMR and CMR spectra of alcohols and ethers. Hydrogen bonding. Proton exchange 640 17.23 The electron spin resonance (ESR) spectrum 642 18 Aldehydes and Ketones Nucleophilic Addition 18.1 18.2 18.3 18.4 18.5 18.6 Structure 657 Nomenclature 658 Physical properties 660 Preparation 667 Preparation of ketones by Friedel-Crafts acylation 666 Preparation of ketones by use of organocopper Compounds 668 CONTENTS 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 Reactions. Nucleophilic addition 669 Oxidation 675 Reduction 677 Addition of Cyanide 678 Addition of derivatives of ammonia 6 79 Addition ofalcohols. Acetal formation 680 Cannizzaro reaction 683 Addition ofGrignardreagents 685 Products of the Grignard synthesis 686 Planning a Grignard synthesis 688 Syntheses using alcohols 692 Limitations of the Grignard synthesis 695 Tetrahydropyranyl (THP) ethers: the use of a protecting group 696 18.20 Analysisofaldehydesandketones 697 18.21 Iodoformtest 697 18.22 Analysisof 1,2-diols. Periodicacidoxidation 699 18.23 Spectroscopic analysisofaldehydesandketones 700 19 Carboxylic Acids 19.1 Structure 713 19.2 Nomenclature 714 19.3 Physical properties 717 19.4 Saltsof carboxylic acids 775 19.5 Industrial source 719 19.6 Preparation 720 19.7 Grignard synthesis 723 19.8 Nitrile synthesis 724 19.9 Reactions 725 19.10 Ionization of carboxylic acids. Acidity constant 729 19.11 Equilibrium 730 19.12 Acidity of carboxylic acids 732 19.13 Structure of carboxylate ions 733 19.14 Effect of substituents on acidity 735 19.15 Conversion into acid Chlorides 73 7 19.16 Conversion into esters 737 19.17 Conversion into amides 740 19.18 Reduction of acids to alcohols 740 19.19 Halogenation ofaliphatic acids. Substituted acids 741 19.20 Dicarboxylic acids 742 19.21 Analysisof carboxylic acids. Neutralizationequivalent 744 19.22 Spectroscopic analysisof carboxylic acids 745 20 Functional Derivatives of Carboxylic Acids Nucleophilic Acyl Substitution 20.1 20.2 20.3 Structure 753 Nomenclature 754 Physical properties 754 xv xvi CONTENTS 20.4 20.5 Nucleophilic acyl Substitution. Role of the carbonyl group Nucleophilic Substitution: alkyl vs. acyl 759 20.6 20.7 20.8 Preparationofacid Chlorides 760 Reactionsofacid Chlorides 761 Conversion ofacid Chlorides into acid derivatives ACID CHLORIDES 762 ACID ANHYDRIDES 20.9 20.10 Preparation ofacid anhydrides 763 Reactions of acid anhydrides 764 AMIDES 20.11 20.12 20.13 20.14 Preparation of amides 766 Reactions of amides 766 Hydrolysisof amides 767 Imides 767 ESTERS 20.15 20.16 20.17 20.18 20.19 20.20 20.21 20.22 20.23 20.24 20.25 21 Carbanions I 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12 22 Preparation ofesters 768 Reactions ofesters 770 Alkaline hydrolysis ofesters 773 Acidic hydrolysis ofesters 776 Ammonolysis ofesters 778 Transesterification 778 Reaction ofesters with Grignard reagents 779 Reduction ofesters 780 Functional derivatives ofcarbonic acid 750 Analysis of carboxylic acid derivatives. Saponification equivalent 784 Spectroscopic analysis of carboxylic acid derivatives 785 Aldol and Claisen Condensations Acidity of a-hydrogens 797 Reactions involving carbanions 799 Base-promoted halogenation of ketones 802 Acid-catalyzedhalogenation of ketones. Enolization 804 Aldol condensation 805 Dehydration of aldol products 807 Use of aldol condensation in synthesis 808 Crossed aldol condensation 809 Reactions related to the aldol condensation 810 The Wittig reaction 811 Claisen condensation. Formation of yS-keto esters 813 Crossed Claisen condensation 816 Amines I. Preparation and Physical Properties 22.1 22.2 22.3 22.4 22.5 Structure 821 Classification 821 Nomenclature 822 Physical properties ofamines Salts ofamines 823 823 755 CONTENTS 22.6 22.7 22.8 22.9 22.10 22.11 22.12 22.13 22.14 22.15 22.16 22 AI xvii Stereochemistry of nitrogen 825 Industrial source 827 Preparation 828 Reductionof nitro Compounds 832 Ammonolysis of halides 832 Reductive amination 834 Hofmann degradation of amides 836 Synthesis of secondary and tertiary amines 836 Heterocyclic amines 837 Hofmann rearrangement. Migration to electron-deficient nitrogen 838 Hofmann rearrangement. Stereochemistry at the migrating group 840 Hofmann rearrangement. Timingof the steps 841 23 Amines II. Reactions 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 23.10 23.11 23.12 23.13 23.14 23.15 23.16 23.17 23.18 23.19 23.20 23.21 Reactions 845 Basicity of amines. Basicity constant 849 Structure and basicity 850 Effect of substituents on basicity of aromatic amines 853 Quaternary ammonium salts. Hofmann elimination 854 E2 elimination: Hofmann orientation. The variable E2 transition State 855 Conversion of amines into substituted amides 857 Ring Substitution in aromatic amines 860 Sulfonation of aromatic amines. Dipolar ions 862 Sulfanilamide. The sulfa drugs 863 Reactions of amines with nitrous acid 864 Diazonium salts. Preparation and reactions 866 Diazonium salts. Replacement by halogen. Sandmeyer reaction 869 Diazonium salts. Replacement by —CN. Synthesis of carboxylic acids 870 Diazonium salts. Replacement by —OH. Synthesis of phenols 870 Diazonium salts. Replacement by —H 871 Syntheses using diazonium salts 871 Couplingof diazonium salts. Synthesis ofazo Compounds 873 Analysisof amines. Hinsberg test 876 Analysisof substituted amides 877 Spectroscopic analysisof amines and substituted amides 877 24 Phenols 24.1 24.2 24.3 24.4 24.5 Structure and nomenclature 889 Physical properties 890 Salts of phenols 893 Industrial source 893 Rearrangement of hydroperoxides. Migration to electrondeficient oxygen 895 xviii CONTENTS 24.6 24.7 24.8 24.9 24.10 24.11 24.12 24.13 24.14 24.15 24.16 24.17 Rearrangementofhydroperoxides. Migratory aptitude 896 Preparation 898 Reactions 899 Acidityof phenols 903 Ester formation. Fries rearrangement 905 Ring Substitution 906 Kolbe reaction. Synthesisofphenolicacids 908 Reimer-Tiemann reaction. Synthesis of phenolic aldehydes. Dichlorocarbene 908 Formation ofarylethers 909 Reactions of aryl ethers 911 Analysisof phenols 912 Spectroscopic analysisof phenols 912 25 CarbanionsII Malonic Ester and Acetoacetic Ester Syntheses 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 Carbanions in organic synthesis 923 Malonic ester synthesis of carboxylicacids 924 Acetoacetic ester synthesis of ketones 92 7 Decarboxylation of /j-keto acids and malonic acids 930 Direct and indirect alkylation ofesters and ketones 931 Synthesis of acids and esters via 2-oxazolines 932 Organoborane synthesis of acids and ketones 933 Alkylation ofcarbonyl Compounds via enamines 935 PART TWO Special Topics 26 Aryl Halides 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 26.10 26.11 26.12 26.13 26.14 26.15 Nucleophilic Aromatic Substitution Structure 943 Physical properties 944 Preparation 946 Reactions 948 Low reactivity of aryl and vinyl halides 949 Structure of aryl and vinyl halides 950 Nucleophilic aromatic Substitution: bimolecular displacement 952 Bimolecular displacement mechanism for nucleophilic aromatic Substitution 955 Reactivity in nucleophilic aromatic Substitution 956 Orientation in nucleophilic aromatic Substitution 957 Electron withdrawal by resonance 958 Evidence for the two Steps in bimolecular displacement 959 Nucleophilic Substitution: aliphatic and aromatic 967 Elimination-addition mechanism for nucleophilic aromatic Substitution. Benzyne 962 Analysis of aryl halides 96 7 xix CONTENTS 27 a,/?-Unsaturated Carbonyl Compounds Conjugate Addition 21.1 27.2 27.3 21A 27.5 27.6 27.7 21.S 27.9 Structure and properties 971 Preparation 973 Interaction of functional groups 974 Electrophilic addition 974 Nucleophilic addition 976 Comparisonof nucleophilic and electrophilic addition The Michael addition 979 The Diels-Alder reaction 982 Quinones 984 978 28 Molecular Orbitals. Orbital Symmetry 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 Molecular orbital theory 991 Wave equations. Phase 992 Molecular orbitals. LCAO method 993 Bonding and antibonding orbitals 994 Electronic configurationsof somemolecules 996 Aromatic character. The Hückel 4n + 2 rule 1000 Orbital symmetry and the chemical reaction 1004 Electrocyclic reactions 1005 Cycloaddition reactions 1013 Sigmatropic reactions 1019 29 Symphoria Neighbonng Group Effects. Catalysis by Transition Metal Complexes 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 Symphoria 1031 Neighboring group eflfects: the discovery. Stereochemistry 1032 Neighboring group eflfects: intramolecular nucleophilic attack 1035 Neighboring group eflfects: rate of reaction. Anchimeric assistance 1037 Homogeneous hydrogenation. Transition metal complexes 1042 Stereochemistry of homogeneous hydrogenation: diastereoselectivity 1046 Stereochemistry of homogeneous hydrogenation: enantioselectivity 1049 The oxo process 1052 Enzyme action 1054 30 Heterocyclic Compounds 30.1 Heterocyclic Systems 1057 FIVE-MEMBERED RINGS 30.2 30.3 30.4 Structure of pyrrole, furan, and thiophene 1059 Source of pyrrole, furan, and thiophene 1061 Electrophilic Substitution in pyrrole, furan, and thiophene. Reactivity and orientation 1062 CONTENTS 30.5 Saturated five-membered heterocycles 1065 SIX-MEMBERED RINGS 30.6 30.7 30.8 30.9 30.10 30.11 30.12 Structureof Pyridine 7066 Source of Pyridine Compounds 1067 Reactionsof Pyridine 1068 Electrophilic Substitution in Pyridine 7065 Nucleophilic Substitution in Pyridine 7069 Basicity of Pyridine 7077 Reduction of Pyridine 1073 31 Macromolecules. Polymers and Polymerization 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 Macromolecules 7077 Polymers and polymerization 7075 Free-radical vinyl polymerization 7050 Copolymerization 7055 Ionic polymerization. Living polymers 1084 Coordination polymerization 7057 Step-reaction polymerization 7090 Structure and properties of macromolecules 7 093 32 Stereochemistry III. Enantiotopic and Diastereotopic Ligands and Faces 32.1 32.2 32.3 32.4 32.5 32.6 32.7 Introduction 7707 Biological oxidation and reduction. Ethanol and acetaldehyde 7707 Biological oxidation and reduction. Deuterium labeling experiments 7705 Biological oxidation and reduction. Stereochemistry 7704 Enantiotopic and diastereotopic ligands 7707 Enantiotopic and diastereotopic faces 7770 Origin of enantiospecificity 7772 PART THREE Biomolecules 33 Lipids Fats and Steroids 33.1 33.2 33.3 33.4 33.5 33.6 33.7 33.8 33.9 The organic chemistry of biomolecules 7779 Lipids 7720 Occurrence and composition of fats 7720 Hydrolysisof fats. Soap. Micelles 1124 Fats assourcesofpureacids and alcohols 7725 Detergents 7726 Unsaturated fats. Hardening of oils. Drying oils 7727 Phosphoglycerides. Phosphate esters 7725 Phosphoüpids and cell membranes 7750 xxi CONTENTS 33.10 33.11 Biosynthesis of fatty acids Steroids 1134 1132 34 Carbohydrates I. Monosaccharides 34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 34.9 34.10 34.11 34.12 34.13 34.14 34.15 34.16 34.17 34.18 34.19 34.20 Introduction 1143 Definition and Classification 1144 (+)-Glucose: an aldohexose 1144 (—)-Fructose: a 2-ketohexose 1146 Stereoisomers of (+)-glucose. Nomenclature of aldose derivatives 1146 Oxidation. Effect ofalkali 1149 Osazone formation. Epimers 1151 Lengthening the carbon chain of aldoses. The Kiliani-Fischer synthesis 1152 Shortening the carbon chain of aldoses. The Ruff degradation 1154 Conversion of an aldose into its epimer 1154 Configuration of (+)-glucose. The Fischer proof 1155 Configurations of aldoses 1160 Optical families. D and L 1162 Tartaricacid 1164 Families of aldoses. Absolute configuration 1166 Cyclic structure of D-(+)-glucose. Formation of glucosides 1168 Configuration about C-1 1173 Methylation 1174 Determination of ring size 1176 Conformation 1178 35 Carbohydrates IL Disaccharides and Polysaccharides 35.1 35.2 35.3 35.4 35.5 35.6 35.7 35.8 35.9 35.10 35.11 35.12 Disaccharides 7755 (+)-Maltose 7755 (+)-Cellobiose 1188 (+)-Lactose 1189 (+)-Sucrose 7797 Polysaccharides 7792 Starch 7793 Structure of amylose. End group analysis Structure of amylopectin 7795 Cyclodextrins 7795 Structure of cellulose 7200 Reactionsof cellulose 7200 1193 36 Proteins and Nucleic Acids Molecular Biology 36.1 36.2 36.3 36.4 Proteins 7205 Structure ofamino acids 7206 Amino acids as dipolar ions 7205 Isoelectric point ofamino acids 7277 CONTENTS xxii 36.5 36.6 36.7 36.8 36.9 36.10 36.11 36.12 36.13 36.14 36.15 36.16 36.17 36.18 36.19 36.20 Configurationof natural aminoacids 1212 Preparation of amino acids 1213 Reactionsof aminoacids 1215 Peptides. Geometry ofthe peptide linkage 1215 Determination of structure of Peptides. Terminal residue analysis. Partial hydrolysis 1217 Synthesisof peptides 1221 Proteins. Classification and function. Denaturation 1225 Structure of proteins 1226 Peptide chain 1226 Side chains. Isoelectric point. Electrophoresis 1227 Conjugated proteins. Prosthetic groups. Coenzymes 1228 Secondary structure of proteins 1229 Biochemistry, molecular biology, and organic chemistry 1235 Mechanism of enzyme action. Chymotrypsin 1236 Nucleoproteins and nucleic acids 1241 Chemistry and heredity. The genetic code 1246 Suggested Readings 1251 Answers to Problems 1263 Index 1279