Download Determinants and matrices

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Determinants and matrices
Definition :
A matrix is a rectangular array of numbers Hor functionsL
arranged in rows and columns
Example :
A=J
2 1 3
N
1 0 2
is a 2 ´ 3 H2 by 3L matrix because it has 2 rows and 3 columns. A m ´ n matrix is said to be of order m ´ n.
H1 2 3 L, order 1 ´ 3
jij 6 zyz, order 2 ´ 1
Column Matrix :
k1{
Square Matrix :
A matrix with same number of rows as columns *
Row Matrix :
Examples :
J
ex
a b
j
N, i
j 2x
c d
ke
3 xy
z
z
x2 {
are 2 ´ 2 square matrices OR square matrices of order 2.
The numbers Hor functionsL are called "entries" or elements " of the matrix.
Double suffix notation :
Consider m ´ n matrix A
a11
i
j
j
j
a21
j
j
A=j
j
j
j
j .
k am1
a12
a22
.
am2
. a1 n y
z
z
. a2 n z
z
z
z
z
. . z
z
z
. amn {
The element in ith row and j th column is denoted by
aij
where i = row number
j = column number
Determinants :
Example :
det J
Eg : Ë
a11
a21
With each square matrix we associate a number denoted by
det HaL or È aij È or È A È called the determinant of A
Determinant of order 2
a12
a
N = Ë 11
a22
a21
a12
Ë = a11 a22 - a21 a12
a22
3 -2
Ë = 3 ´ 5 - 4 ´ H-2L = 15 + 8 = 23
4 5
H a number L
Example :
Construct a 2 nd order det in which
aij = H1 + 3 iL - j2 and evaluate.
Clearly i = 1, 2,
a11
a12
a21
a22
j = 1, 2, thus
= H1 + 3L - 12 = 4 - 1 = 3
= H1 + 3L - 22 = 4 - 4 = 0
= H1 + 3 ´ 2L - 12 = 7 - 1 = 6
= H1 + 3 ´ 2L - 22 = 7 - 4 = 3
det Haij L = Ë
3 0
Ë = 3´3 - 6´0 = 9
6 3
Minors and Cofactors :
The minor Mij associated with element aij in an n th order det
is defined to be a det of order n - 1 obtained by removing
ith row and jth column of the original det.
Example :
a11
i
j
j
j
j
a21
j
j
j
k a31
The minor of a22 is Ë
a12 a13 y
z
z
z
a22 a23 z
z
z
z
a32 a33 {
a13
Ë
a33
a11
a31
Laplace Exapansion of Dets :
We know D = Ë
a11
a21
a12
Ë = a11 a22 - a21 a12
a22
Here c11 = a22 , c12 = a12 ,
c21 = -a12 ,
c22 = a11
Clearly D = a11 c11 + a12 c12 HExpansion by first rowL
Similarly
D = a11 c11 + a21 c21
D = a21 c21 + a22 c22
D = a12 c12 + a22 c22
H Expansion by first column L
H Expansion by 2 nd row L
H Expansion by 2 nd columnL
Related documents