Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name: ______________________________ Tuesday, October 16, 2012 MTH 113 Test 2 (Chapter 5) 1. (X pts.) Verify the following trigonometric identities… sin x – sin x cos2 x = sin3 x cot(θ) cos(θ) + sin(θ) = csc(θ) sin x – sin x(1 – sin2x) sin x – sin x + sin3x sin3x 2. (X pts.) Suppose that sin α = [cos x / sin x]cos x + sin x cos2x / sin x + sin x (cos2x + sin2x) / sin x 1 / sin x = csc x 𝟑 𝟓 for a quadrant II angle α and sin β = exact value of the following (hint: find cos α and cos β first)… cos (α – β) 𝟏 𝟐 for a quadrant I angle β. Find the sin (α + β) cos a = - 4/5 , cos b = sqrt(3)/2 cos a cos b + sin a sin b (- 4/5)(sqrt(3)/2) + (3/5)(1/2) [- 4sqrt(3) + 3] / 10 sin a cos b + cos a sin b (3/5)(sqrt(3)/2) + (- 4/5)(1/2) [3sqrt(3) - 4] / 10 3. (X pts.) Find the exact value of cos 30o using only 90o and 60o angles cos 30o = cos (90o – 60o) = cos 90o cos 60o + sin 90o sin 60o = 0 + 1(sqrt(3)/2) = sqrt(3) / 2 4. (X pts.) Verify the trigonometric identity 𝐜𝐨𝐬(𝜶−𝜷) 𝐜𝐨𝐬 𝜶 𝐜𝐨𝐬 𝜷 = 1 + tan(α) tan(β) (cos a cos b) / (cos a cos b) + (sin a sin b) / cos a cos b = 1 + tan a tan b 5. (X pts.) If sin θ = 4/5 and θ lies in quadrant II, find the exact value of the following… sin (2θ) tan (2θ) cos a = - 3/5 , tan a = - 4/3 2 sin a cos a 2(4/5)(- 3/5) - 24 / 25 2 tan a / (1 – tan2 a) 2(- 4/3) / (1 – (16/9)) (- 8/3) / (-7/9) (- 8/3) * -(9/7) 24 / 7 6. (X pts.) Verify the following trigonometric identities… tan θ = 𝐬𝐢𝐧 𝟐𝛉 𝟏+𝐜𝐨𝐬 𝟐𝛉 (2 sin a cos a) / (1 + (2cos2a – 1)) (2 sin a cos a) / (2cos2a) [2/2] [sin a / cos a] [cos a / cos a] tan a 𝒙 𝒔𝒆𝒄 𝒙−𝟏 tan( ) = 𝟐 𝒕𝒂𝒏 𝒙 [(1/cos x) – 1] / [sin x / cos x] [(1 – cos x)/cos x] / [sin x / cos x] [(1 – cos x)/cos x] * [cos x / sin x] (1 – cos x )/ sin x = tan (x/2) 7. (X pts.) Use the half-angle formulas to find the exact value of the function cos 105o -- use radical signs as necessary cos 105o = cos (210o/2) = - sqrt[(1 + cos 210o)/2] = - sqrt[(1 + (-sqrt(3)/2)) / 2] = - sqrt[(2 – sqrt(3))/2 / 2] = - sqrt [(2 – sqrt(3)) / 4] 8. (X pts.) Express each sum or difference as a product (if possible, find this product’s exact value) sin 8x – sin 3x cos 75o + cos 15o 2 sin [(8x – 3x)/2] cos[(8x + 3x)/2] 2 sin(5x/2) cos(11x/2) 2 cos[(75+15)o/2] cos[(75-15)o/2] 2 cos(45o) cos(30o) 2 (sqrt(2)/2) (sqrt(3)/2) sqrt(6) / 2 9. (X pts.) Express each product as a sum or difference sin 7x sin 3x ½[cos(4x) – cos(10x)] ½cos(4x) – ½cos(10x) 10. (X pts.) Verify the trigonometric identity cos 4x sin x ½[sin(5x) – sin(3x)] ½sin(5x) – ½sin(3x) 𝐜𝐨𝐬 𝟑𝐱 –𝐜𝐨𝐬 𝐱 𝐬𝐢𝐧 𝟑𝐱+𝐬𝐢𝐧 𝐱 = – tan x -2 sin(2x)sin(x) / 2 sin(2x)cos(x) = - sin(x) / cos(x) = - tan(x) 11. (X pts.) Solve each equation on the interval [0, 2π) tan 2x = √𝟑 4 cos2 x – 3 = 0 2x = pi/3 x = pi/6 + npi x = {pi/6, 7pi/6} cos2 x = 3/4 cos x = +/- sqrt(3) / 2 + 2npi x = {pi/6, 5pi/6, 7pi/6, 11pi/6} cos 2x + sin x = 0 1 – 2sin2x + sin x = 0 2sin2x – sin x – 1 = 0 (2sin x + 1)(sin x – 1) = 0 sin x = -1/2 sin x = 1 x = 7pi/6, 11pi/6 x = pi/2 12. (X pts.) Potential word problem??? See chapter review at end of chapter 5 in book (pg 641 - #’s 68/69) -- EXTRA CREDIT -????