Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Modern Control System EKT 308 Modeling in state space Modeling Physical Systems State Variable Model • Modern Control Theory is based on state variable. • Can handle multiple-input multiple output Linear, nonlinear Time variant or invariant. State: The smallest set of variables (called state variables) such that knowledge of these variables at t t0 , together with knowledge of the input for t t 0 , completely determines the behavior of the system at any time t t 0 State Vector : State variables x1 , x2 ,........, xn form a vector called state vector. representing a system state x1 (t ) x (t ) x (t ) 2 : x ( t ) n State Variable Model (contd…) State-space: The n-dimensional space spanned by the n state vectors is called the state-space. Any state can be represented by a point in the state space. State-Space Equation Variables: Input variables, output variables and state variables Assume for a system, Number of state variables n Number of inputs r Number of outputs m Then the system can be described by, x1 (t ) f1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) x2 (t ) f 2 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) .... .... ... .... xn (t ) f n ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) State-Space Equation (contd…) Outputs of the system may be given by, y1 (t ) g1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) y2 (t ) g 2 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) .... .... ... .... ym (t ) g m ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) Let us define x1 (t ) x (t ) x (t ) 2 : x ( t ) n y1 (t ) y (t ) y (t ) 2 : y ( t ) m u1 (t ) u (t ) u (t ) 2 : u ( t ) r State-Space Equation (contd…) Also define, f1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) f ( x , x ,...., x ; u , u ,..., u ; t ) n 1 2 r f ( x, u , t ) 2 1 2 .... .... ... f n ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) g1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) g ( x , x ,...., x ; u , u ,..., u ; t ) n 1 2 r g ( x, u , t ) 2 1 2 .... .... ... g ( x , x ,...., x ; u , u ,..., u ; t ) n 1 2 r m 1 2 Then x (t ) f ( x , u , t ) y (t ) g ( x , u , t ) (1) (2) System response can be described by first order differenti al equation, x1 a11x1 a12 x2 ....... a1n xn b11u1 b12u2 ... b1mum x2 a21x1 a22 x2 ....... a2 n xn b21u1 b22u2 ... b21mum ... ..... ..... .... ... xn an1 x1 an 2 x2 ....... ann xn bn1u1 bn 2u2 ... bmmum Above set of equations can be further simplified using matrix notation x1 a11 a12 d x2 a21 a22 .. dt ... .. xn an1 an 2 .. a1n x1 b11 .. b1m u1 .. a2 n x2 .. .. .. .. .. .. ... bm1 .. bmm um .. ann xn (3) Equation (3) can be written in short form x Ax Bu (4) Similarly output can be written as y C x Du (5) Matrix A is called state matrix. Matrix B is called input matrix Matrix C is called output matrix Matrix D is called direct tra nsmission matrix. Example x1 capacitor voltage vc (t ) x2 inductor current iL (t ) dv ic C c u (t ) iL (5) dt diL L Ri L vc (6) dt Output : vo Ri L (t ) Equations (5) and (6) can rewritten as, dx1 1 1 x2 u (t ) (7) dt C C dx2 1 R x1 x2 (8) dt L L y1 (t ) Rx2 1 1 0 C x x C u (t ) 1 R 0 L L y [0 R ] x If R 3, L 1, C 1 / 2 0 2 2 x x u 1 3 0 y [0 3]x Scilab program A = [0, -2;1, -3]; disp (A); B=[2;0]; disp(B); C=[0 3]; disp(C); t = 0:0.01:10; len = length(t); //u = sin(t); //u = t; u = ones(1, len); dt = 0.01; x = [0;0]; y = zeros(1, len); for idx=1:len xdot = A*x+B*u(idx); x = x + xdot * dt; y(idx)=C * x; end figure (1); plot(t, y); y (t ) when u (t ) is a unit step y (t ) when u (t ) is a unit ramp y (t ) when u (t ) is sinusoidal Mechanical Systems Mechanical systems are governed by Newton's Laws of motion. There are three basic elements that comprise a mechanical system. These are Mass, Damping(friction), and Spring. Newton's Second law: F ma Force = mass x acceleration