Download Modern Control System EKT 308

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Modern Control System
EKT 308
 Modeling in state space
 Modeling Physical Systems
State Variable Model
• Modern Control Theory is based on state variable.
• Can handle
 multiple-input multiple output
 Linear, nonlinear
 Time variant or invariant.
State: The smallest set of variables (called state variables) such that
knowledge of these variables at t  t0 , together with knowledge of the input
for t  t 0 , completely determines the behavior of the system at any time t  t 0
State Vector : State variables
x1 , x2 ,........, xn
form a vector called state vector.
representing a system state
 x1 (t ) 
 x (t )

x (t )   2 
 : 


x
(
t
)
 n 
State Variable Model (contd…)
State-space: The n-dimensional space spanned by the n state
vectors is called the state-space. Any state can be represented by
a point in the state space.
State-Space Equation
Variables: Input variables, output variables and state variables
Assume for a system,
Number of state variables  n
Number of inputs  r
Number of outputs  m
Then the system can be described by,
x1 (t )  f1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
x2 (t )  f 2 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
....
....
...
....
xn (t )  f n ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
State-Space Equation (contd…)
Outputs of the system may be given by,
y1 (t )  g1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
y2 (t )  g 2 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
....
....
...
....
ym (t )  g m ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
Let us define
 x1 (t ) 
 x (t )

x (t )   2 
 : 


x
(
t
)
 n 
 y1 (t ) 
 y (t ) 

y (t )   2 
 : 


y
(
t
)
 m 
 u1 (t ) 
u (t )

u (t )   2 
 : 


u
(
t
)
 r 
State-Space Equation (contd…)
Also define,
 f1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) 
 f ( x , x ,...., x ; u , u ,..., u ; t ) 
 
n
1
2
r

f ( x, u , t )   2 1 2
 ....
....
... 


 f n ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t )
 g1 ( x1 , x2 ,...., xn ; u1 , u2 ,..., ur ; t ) 
 g ( x , x ,...., x ; u , u ,..., u ; t ) 
 
n
1
2
r

g ( x, u , t )   2 1 2
 ....
....
... 


g
(
x
,
x
,....,
x
;
u
,
u
,...,
u
;
t
)
n
1
2
r
 m 1 2

Then
  

x (t )  f ( x , u , t )

  
y (t )  g ( x , u , t )
(1)
(2)
System response can be described by first order differenti al equation,
x1  a11x1  a12 x2  .......  a1n xn  b11u1  b12u2  ...  b1mum
x2  a21x1  a22 x2  .......  a2 n xn  b21u1  b22u2  ...  b21mum
...
.....
.....
....
...
xn  an1 x1  an 2 x2  .......  ann xn  bn1u1  bn 2u2  ...  bmmum
Above set of equations can be further simplified using matrix notation
 x1   a11 a12
  
d  x2  a21 a22

..
dt  ...   ..
  
 xn  an1 an 2
.. a1n   x1 
 b11 .. b1m   u1 



.. a2 n   x2  
  .. .. ..   .. 
.. ..   ... 
   bm1 .. bmm  um 
.. ann   xn 
(3)
Equation (3) can be written in short form



x  Ax  Bu
(4)
Similarly output can be written as



y  C x  Du
(5)
Matrix A is called state matrix.
Matrix B is called input matrix
Matrix C is called output matrix
Matrix D is called direct tra nsmission matrix.
Example
x1  capacitor voltage vc (t )
x2  inductor current iL (t )
dv
ic  C c  u (t )  iL
(5)
dt
diL
L
  Ri L  vc
(6)
dt
Output : vo  Ri L (t )
Equations (5) and (6) can rewritten as,
dx1
1
1
  x2  u (t )
(7)
dt
C
C
dx2 1
R
 x1  x2
(8)
dt
L
L
y1 (t )  Rx2
1

1
  0  C     
x
x   C u (t )

1
R
0

 
 
L
L

y  [0 R ] x
If R  3, L  1, C  1 / 2
 0  2  2
x
x   u

1  3 0

y  [0 3]x
Scilab program
A = [0, -2;1, -3];
disp (A);
B=[2;0];
disp(B);
C=[0 3];
disp(C);
t = 0:0.01:10;
len = length(t);
//u = sin(t);
//u = t;
u = ones(1, len);
dt = 0.01;
x = [0;0];
y = zeros(1, len);
for idx=1:len
xdot = A*x+B*u(idx);
x = x + xdot * dt;
y(idx)=C * x;
end
figure (1);
plot(t, y);
y (t ) when u (t ) is a unit step
y (t ) when u (t ) is a unit ramp
y (t ) when u (t ) is sinusoidal
Mechanical Systems
Mechanical systems are governed by Newton's Laws of motion.
There are three basic elements that comprise a mechanical system.
These are
Mass,
Damping(friction), and
Spring.
Newton's Second law: F  ma Force = mass x acceleration
Related documents