Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp Quantum Foundations in Mesoscopic Physics Kicheon Kang (강기천) Department of Physics Chonnam National University http://meso.chonnam.ac.kr Mesoscopic Physics & Quantum Information Lab. Outline • 양자역학의 기묘함 - 중첩, 우연, 상보성, 비국소성, 측정문제 • 중시계 물리학 (Mesoscopic Physics) - Quantum transport, interference, and shot noise • 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test Mesoscopic Physics & Quantum Information Lab. Outline • 양자역학의 기묘함 - 중첩, 우연, 상보성, 비국소성, 측정문제 • 중시계 물리학 (Mesoscopic Physics) - Quantum transport, interference, and shot noise • 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test Mesoscopic Physics & Quantum Information Lab. 양자역학의 기묘함 • • • • • • 중첩 (superposition) 객관적 우연 (indeterminism) 상보성 (complementarity) 비국소성 (nonlocality) ~ quantum entanglement “측정문제 (measurement problem)” ~ wave function collapse …… Mesoscopic Physics & Quantum Information Lab. 중첩 (Superposition) Charles Addams, The New Yorker Magazine 1940 Mesoscopic Physics & Quantum Information Lab. 객관적 우연 (Indeterminism) 동전 던지기 Quantum Coin or measurement 우연 = 무지 (주관적) (lack of knowledge) 우연 = intrinsic absence of information Mesoscopic Physics & Quantum Information Lab. 객관적 우연 (Indeterminism) A. Einstein vs. N. Bohr “Stop telling God what to do! (신에게 명령하는 것을 중단하시죠!)” “ God does not play ” dice (신은 주사위 놀이를 하지 않는다) Mesoscopic Physics & Quantum Information Lab. 상보성 (Complementarity): Behavior of a Quanton Interference fringe or distinguishability “detector”(environment) states rc Screen Interference term in the distribution at the rc: measure of the indistinguishability Electron gun “Wave-particle duality” or “complementarity” (‘detection’) (no ‘detection’) Mesoscopic Physics & Quantum Information Lab. 비국소성 (Nonlocality) Einstein, Podolsky, Rosen (1935) The EPR Paradox (Bohm’s version) a Cf. Classical correlation b There is correlation, but ‘measurement’on a particle does not affect the (probability Entangled state (quantum correlation): of) outcome of the other Bell’s inequality (1966) : An inequality that any local hidden variable theory should satisfy ”Spooky action at a distance” (원거리에서의 ‘유령의’ 작용) Experiment agrees with the prediction of quantum theory (Aspect et al. (1982) etc.) Mesoscopic Physics & Quantum Information Lab. 측정문제 (Measurement problem) Wave function measurement (before measurement) Collpase of the wave function A measurement cannot be described in terms of - 파동은 갑자기 어디로 갔나? - 그러면 ‘waving’ 하던 것은 무엇인가? Mesoscopic Physics & Quantum Information Lab. 양자역학에 대처하는 우리의 자세 • “Shut up and calculate” interpretation • Copenhagen (Orthodox) Interpretation - Dirac, etc. “No elementary phenomenon is a phenomenon until it is observed.” • - Niels Bohr - Search for the hidden variable (deterministic) theory - de Brogile, Einstein, Bohm, etc. • Matter & mind (quantum & classical) - Wigner, etc. • Many-world interpretation - Everett, etc. • ….. Mesoscopic Physics & Quantum Information Lab. 양자역학의 기묘함 • • • • • • 중첩 객관적 우연 상보성 (complementarity) 비국소성 (nonlocality) ~ quantum entanglement “측정문제 (measurement problem)” ~ wave function collapse …… ** Attention! All these properties are the basic resources for quantum communication and computation. Mesoscopic Physics & Quantum Information Lab. Uncertainty & Double-Slit Experiment R. Feynman (1965) Electron gun Screen d Disturbance of electron momentum: D p > h/d required to get the which-path information (Dx < d) - This “momentum kick” washes out the interference fringe Mesoscopic Physics & Quantum Information Lab. Uncertainty & Double-Slit Experiment R. Feynman (1965) Heisenberg’s uncertainty principle: “It is impossible to design an apparatus to determine which hole the electron passes through, that will not at the same time disturb the electrons enough to destroy the interference pattern.” Mesoscopic Physics & Quantum Information Lab. ‘Complementarity Beyond Uncertainty’ (?) (M. O. Scully et al. (1991)) “No! it is possible to design experiments which provide which-path information via detectors which do not disturb the system in any noticeable way, (i.e. due simply to the establishing of quantum correlations)” Quantum Eraser Loss of interference may not be irreversible: Which-path information can be erased by a suitable measurement on the detector. Mesoscopic Physics & Quantum Information Lab. Realization of Quantum Eraser with Entangled Photons Which-path information can be erased by a suitable measurement on the detector (i.e., its entangled twin). • A.G. Zajonc et al., Nature 353, 507 (1991). • P.G. Kwiat et al., PRA 45, 7729 (1992). • T.J. Herzog et al., PRL 75, 3034 (1995). • T.-G. Noh & C.K. Hong, JKPS 33, 383 (1998). • Y.-H. Kim et al., PRL 84, 1 (2000). • …… Mesoscopic Physics & Quantum Information Lab. Realization of Quantum Eraser with Entangled Photons T.G. Noh & C.K. Hong, JKPS, JOSA (1998) - No interference in the single photon detection (complete WP information carried by its entangled twin) - WP information is erased by the coincidence count and the hidden coherence reappears! Mesoscopic Physics & Quantum Information Lab. Realization of Quantum Eraser with Entangled Photons LA, LB >> L0: Choice of ‘wave-like’ or ‘particle-like’ behavior can be delayed after the detection of signal photon LA LB Y.H. Kim et al., PRL (2000) R01 R02 L0 D0 Counts R03 Mesoscopic Physics & Quantum Information Lab. Outline • 양자역학의 기묘함 - 중첩, 우연, 상보성, 비국소성, 측정문제 • 중시계 물리학 (Mesoscopic Physics) - Quantum transport, interference, and shot noise • 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test Mesoscopic Physics & Quantum Information Lab. What is ‘Mesoscopic’ ? Mesoscopic Physics & Quantum Information Lab. Fermi Wavelength (lF) & Dimensionality Mesoscopic Physics & Quantum Information Lab. 2-Dimensinal Electron Gas (2DEG) gates The best solid-state system for studying quantum physics! - High mobility/coherence due to the separation of the conduction channel and doped region - Etching/gating required to get lower dimension (wire, dot) Mesoscopic Physics & Quantum Information Lab. Conductance Quantization Van Wees et al. (1988), D.A. Wharam et al. (1988) Conductance (G) vs. transmission amplitude (tn) (Landauer formula) - Ballistic, coherent motion of electrons Mesoscopic Physics & Quantum Information Lab. Quantum Dots Charge and energy quantization : charging energy of single electron, : level discreteness : Coulomb blockade, single electron tunneling : resonant tunneling (phase-coherent) Mesoscopic Physics & Quantum Information Lab. Resonant Tunneling through a Quantum Dot Coherent resonant tunneling through a single QD level (e0) Phase information cannot be extracted in this geometry Mesoscopic Physics & Quantum Information Lab. Double-Slit Aharonov-Bohm Interferometer Schuster et al., Nature (1997) Coulomb blockade oscillation Double-slit type AB oscillation: -Very small probability of multiple reflections Mesoscopic Physics & Quantum Information Lab. Controlled ‘Dephasing’ via Charge Detection: Heuristic Argument QD Aleiner et al., PRL (1997) Detection due to change of transmission probability QPC : Change in the # of electrons crossing the QPC > Quantum shot noise Binomial random distribution : For td << tdwell , the electron will be detected! Mesoscopic Physics & Quantum Information Lab. Controlled Dephasing in a Which-Path Interferometer Buks et al., Nature (1998) Visibility reduced by charge detection Detector sensitivity Mesoscopic Physics & Quantum Information Lab. Phase-Sensitive Detection QD Detection due to change of scattering phase (not observed) QPC : Change in the phase of electrons crossing the QPC > Phase flutuation Phase-sensitive detection Mesoscopic Physics & Quantum Information Lab. Phase-Sensitive Detection: Experiment Sprinzak et al., PRL (2000) Mesoscopic Physics & Quantum Information Lab. A Mesoscopic Two-path Interferometer - Electronic analogue of optical Mach-Zehnder interferometer Optical Mach-Zehnder Interferometer Solid-State Mach-Zehnder Interferometer? E B >>0 B Edge state Electron beam M : Mirror BS : Beam Splitter S : Source D : Detector ~100% visibility, sensitive phase measurement Quantum Point Contact Beam splitter Mesoscopic Physics & Quantum Information Lab. A Mesoscopic Two-path Interferometer - Electronic analogue of optical Mach-Zehnder interferometer Y. Ji et al., Nature (2003) Optical Mach-Zehnder interferometer quantum Hall edge state Electronic beam quantum point contact (QPC) Beam splitter Mesoscopic Physics & Quantum Information Lab. Outline • 양자역학의 기묘함 - 중첩, 우연, 상보성, 비국소성, 측정문제 • 중시계 물리학 (Mesoscopic Physics) - Quantum transport, interference, and shot noise • 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test Mesoscopic Physics & Quantum Information Lab. Complementarity Test in a Two-Path Interferometer I KK, PRB (2007) Coulomb interactions modified trajectories Entanglement Two particle state at this stage: For symmetric BS-1 & BS-3 with Df=p ‘Bell state’ Single particle interference: Two particle interference: (for a symmetric BS-1, BS-2) Fringe visibility is proportional to |n | Measure of the indistinguishability : visibility independent of |n | : WP information erased by the projective measurement in the detector Mesoscopic Physics & Quantum Information Lab. Complementarity Test in a Two-Path Interferometer I KK, PRB (2007) In summary: 1. 2. 3. 4. 5. Interferometer-detector entanglement through the elastic Coulomb interaction The entanglement and the WP information encoded in the relative phase Df Single particle interference suppressed by the WP information The WP information encoded in the phase is erased by the coincidence count, because the electron count in the detector deletes the phase information The interference reappears Mesoscopic Physics & Quantum Information Lab. Complementarity Test in a Two-Path Interferometer I KK, PRB (2007) In solid-state circuit: “Entangled many-body transport state”: (two input electrodes are biased with voltage V) Current (Ia) and cross correlation (Sag) Single-pariticle detection & joint-detection probability can be obtained from the current and cross correlation measurement Mesoscopic Physics & Quantum Information Lab. Experimental Realization! I. Neder et al., PRL (2007) detector input interferometer input Interferometer & detector output • Two edge states of filling factor 2: outer channel - interferometer inner channel - detector • Coulomb interaction between the two channels phase shift entanglement • Total current fluctuations (shot noise) in D2: Cross correlation Mesoscopic Physics & Quantum Information Lab. Experimental Realization! current Low detector voltage Almost perfect WP detection Single particle interference is suppressed by the WP information Interference is recovered by the cross correlation shot noise • • High detector voltage Mesoscopic Physics & Quantum Information Lab. Complementarity Test in a Two-Path Interferometer II KK, PRB (2007) Two particle interference: + Two coupled Mach-Zehnder interferometers Output currents at lead a, b are not affected by the presence of another beam splitter ‘Particle-like’ or ‘wave-like’ behavior can be chosen by controlling the detector Mesoscopic Physics & Quantum Information Lab. Complementarity Test in a Two-Path Interferometer II Output current at g KK, PRB (2007) For upper path For lower path A duality relation: V: visibility of interference D: distinguishability Mesoscopic Physics & Quantum Information Lab. Nonlocality Test: Bell’s Inequality KK & K.H. Lee, arXiv:0707.1170 (2007) BS-1,BS-2,BS-3: Symmetric beam splitters BS-4: Phase of MZI-d fixed at some value depending on Bell’s inequality: [CHSH inequality](Clauser et al. PRL (1969)) where In our case we find: Bell’s inequality is violated for any nonzero Mesoscopic Physics & Quantum Information Lab. 요 약 (Summary) • 양자역학의 기묘함 - 중첩, 우연, 상보성, 비국소성, 측정문제 • 중시계 물리학 - Quantum transport, interference, and shot noise • 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test Mesoscopic Physics & Quantum Information Lab. 결론 (Conclusion) ? “If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.” - Niels Bohr “Although quantum mechanics has profoundly shocked me, I haven’t understood it yet.” - KK Mesoscopic Physics & Quantum Information Lab.