Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Science with Optical/NIR Interferometers A. Richichi (ESO Garching) Interferometry Week ESO Santiago, 14-16 January 2002 Layout of the Tutorial - I Interferometers • Types of interferometers under consideration • Types of interferometry not considered here • Characteristics of interferometers vs. science drivers • Illustration of a few representative facilities A. Richichi Interferometry Week, ESO Santiago 16-01-02 2 Layout of the Tutorial - II Science with Interferometers Stars & PMS Stars • Fundamental Stellar Parameters - diameters, limb darkening, flattening temperatures masses ages • Binaries • Stellar Pulsation • Circumstellar Matter • Distances A. Richichi Interferometry Week, ESO Santiago 16-01-02 3 Layout of the Tutorial - III Science with Interferometers ctd. Exoplanets and BD • Detection and discrimination • Basic parameters • Relationship to other EP/BD detection methods Extragactic sources Miscellaneous • Detection • Microlensing • Basic parameters • Solar system objects • Observation strategies A. Richichi Interferometry Week, ESO Santiago 16-01-02 4 VLTI Science - Main References ESO Symposia: Science with the VLT - 1994 (Walsh/Danziger) Science with the VLTI - 1996 (Paresce) From Extrasolar Planets to Cosmology - 1999 (Renzini) SPIE Interferometry in Optical Astronomy: 1998 Kona, 2001 JENAM, 2000 Munich (22 papers on science with ground-based interferometers) Workshops: i.e., ESO April 2001, June 2001 Schools: i.e., 1999 Michelson Summer School, 2000 NOVA/ESO/ESA Summer School, 2002 EuroWinter School. Scientific Objectives of the VLT Interferometer (Paresce, March 2001) (http://www.hq.eso.org/projects/vlti/, abridged in Messenger, 104) AMBER Scientific Analysis Report, PDR 2000 - MIDI misc. Science Demonstration Team, PRIMA White Book, ... 5 Layout of the Tutorial - IV Science with the VLT Interferometer • Facility instrumentation (¶ Schöller) - wavelengths & limiting magnitudes - dates of availability - scientific applications • Getting ready to observe with the VLTI - guidelines on object selection and proposal preparation - calibrators • VLTI Data (see Messenger 106, P. Ballester et al.) - format - pipeline - data analysis • Examples and simulations of VLTI results (given throughout) A. Richichi Interferometry Week, ESO Santiago 16-01-02 6 Characteristics of Interferometers • optical to thermal IR ( 0.5m to 20m) - types of detectors background atmospheric turbulence (tip-tilt, fringe tracking, AO) mechanical and optical constraints • Michelson vs. Fizeau interferometers - homothetic mapping, field of view - types of baselines • number of telescopes - number of baselines beam combination (multi-axial, co-axial) efficiency closure phases A. Richichi Interferometry Week, ESO Santiago 16-01-02 7 Other Interferometric Methods • single-telescope - speckle interferometry - aperture masking • multi-telescope - intensity interferometer - heterodine detection - nulling interferometry • space instruments - SIM, Darwin, GAIA A. Richichi Interferometry Week, ESO Santiago 16-01-02 8 Overview of current Interferometers facility CHARA COAST GI2T IOTA ISI KECK LBT MIRA-I.2 MRO NPOI PTI SUSI VLTI funding location n. of apertures (m) baseline year of apertures primary secondary max (m) first fringes USA Mt. Wilson UK Cambridge F Calern USA, F Mt. Hopkins USA Mt. Wilson USA Mauna Kea USA, D, I Mt. Graham J Tokyo USA New Mexico USA Arizona USA Mt. Palomar AUS New South Wales ESO Paranal A. Richichi 6 5 2 2-3 2-3 2(4) 2 2 3 3-6 3 2 4(3) 1.0 0.4 1.5 0.45 1.65 10 8.4 0.30 2.4 0.35 0.40 0.14 8.2 Interferometry Week, ESO Santiago 16-01-02 1.8 1.8 350 1999 48 1991 65 38 1993 75 1988 85(140) 2001 23 in constr. 6 2001 100 funded 64 1994 110 1995 640 130(205) 2000 9 Interferometers on the WEB facility CHARA COAST GI2T IOTA ISI KECK LBT MIRA-I.2 MRO NPOI PTI SUSI VLTI A. Richichi URL http://www.chara.gsu.edu/CHARA/array.html http://www.mrao.cam.ac.uk/telescopes/coast/index.html http://wwwrc.obs-azur.fr/fresnel/gi2t/gi2t.htm http://cfa-www.harvard.edu/cfa/oir/IOTA/ http://isi.ssl.berkeley.edu/ http://huey.jpl.nasa.gov/keck/ http://medusa.as.arizona.edu/lbtwww/lbt.html http://tamago.mtk.nao.ac.jp/mira/MIRA-I_2/mira_1_2.html http://www.physics.nmt.edu/research/MRO.html http://ftp.nofs.navy.mil/projects/npoi/ http://huey.jpl.nasa.gov/palomar/ http://www.physics.usyd.edu.au/astron/susi/ http://www.hq.eso.org/projects/vlti/ Interferometry Week, ESO Santiago 16-01-02 10 Design vs. Science Drivers Baseline Length • Resolution improves with Baseline - “correlated” magnitude decreases - relative errors increase • Calibrators - accuracy vs baseline magnitude vs baseline density boot-strapping A. Richichi Interferometry Week, ESO Santiago 16-01-02 11 Wavelength vs. Science Drivers Wavelength • Angular Resolution - resolution -1 • Atmospheric Turbulence - phase errors -1 isoplanatic patch 6/5 seeing -1/5 coherence time 6/5 • Source Spectrum - many (but not all!) sources are red - spectral features A. Richichi Interferometry Week, ESO Santiago 16-01-02 12 Geometry vs. Science Drivers Telescopes • Number of telescopes - number of baselines N(N-1) - number of phase closures (N-1)(N-2)/2 • Beam Combiner - complexity drives cost (and size) - efficiency decreases with number of telescopes - new approaches • Array Geometry - non-redundancy configuration NS vs. EW orientation relocation of telescopes A. Richichi Interferometry Week, ESO Santiago 16-01-02 13 Closure Phases from J.D. Monnier, 1999 A. Richichi Interferometry Week, ESO Santiago 16-01-02 14 Examples of Array Geometries - CHARA A. Richichi Interferometry Week, ESO Santiago 16-01-02 15 Examples of Array Geometries - NPOI A. Richichi Interferometry Week, ESO Santiago 16-01-02 16 Examples of Array Geometries - VLTI A. Richichi Interferometry Week, ESO Santiago 16-01-02 17 Stellar effective temperatures Direct check for theoretical models of stellar atmospheres • determination of physical characteristics • understanding of energy production/dissipation mechanisms, stellar evolution, chemical abundances, etc. • population synthesis models Fbol = a 2Teff4 • and Fbol are the keys to direct Teff estimates • Teff ()½ (Fbol) ¼ ( /) < 5% typically required • 102 stars measured by LO, LBI A. Richichi Interferometry Week, ESO Santiago 16-01-02 18 Teff Direct Measurements - a) Early and intermediate spectral types, Barnes et al. (1976) A. Richichi Interferometry Week, ESO Santiago 16-01-02 19 Teff Direct Measurements - b) Late spectral types, Barnes & Evans (1976) A. Richichi Interferometry Week, ESO Santiago 16-01-02 20 Teff Direct Measurements - c) Late spectral types, Barnes & Evans (1976) A. Richichi Interferometry Week, ESO Santiago 16-01-02 21 Teff Calibration for Cool Giants Ridgway et al. 1980 Dyck et al. 1996 Perrin et al. 1998 Richichi et al. 1999 Currently 646 measurements of 253 class III stars in CHARM catalogue (Richichi & Percheron 2001) Teff is still uncertain for types cooler than M7 (several parameters at play). Need monitoring of spectra and photometry. A. Richichi Interferometry Week, ESO Santiago 16-01-02 22 Teff of Mira stars From Van Belle et al. 1996 A. Richichi Interferometry Week, ESO Santiago 16-01-02 23 Teff of carbon stars Teff needs Fbol: photometric monitoring is strictly required! Y Tau From Richichi et al. 1995 A. Richichi Interferometry Week, ESO Santiago 16-01-02 24 Teff calibration for carbon stars From Van Belle et al. 2000 A. Richichi Interferometry Week, ESO Santiago 16-01-02 25 Multiwavelength monitoring Teff = 3500 K = 2.0mas Teff = 2500 K = 3.9mas Fbol ~ 6% V K A. Richichi Interferometry Week, ESO Santiago 16-01-02 26 Teff of cool MS stars Rationale: • Direct Teff measurements are very scarce: 7 K and 1M dwarfs (~50 times less than giants) • Important implications for many fields of astronomy: most common field stars • Transition to L-BD regime / Outliers • Mass loss / envelopes / circumstellar environment • surface features A. Richichi Interferometry Week, ESO Santiago 16-01-02 27 Some cool MS stars visible from Paranal Name V Sp K phi(mas) baseline(m) 16 40 200 not complete nor accurate! Cen B HD 128621 V450 Aql ? 41 Ara BD+20 4139B V1365 Ori eps Ind HD 45724 HD 45588 HD 210090 BD+29 4582B NSV 1874 GJ 702A DY Eri HD 40397 HD 209709 BD+04 4223 HD 112278 HD 85461 CD-48 3065 DO 4490 A. Richichi 1.33 6.48 5.46 8.18 6.84 4.69 6.2 6.07 6.35 8.3 6.34 4.2 4.41 6.8 6.43 8.6 6.97 6.52 8.1 8.7 K1V M8V M0V M9 M6V K4.5V M1 M0 M1 M8 M0V K0V K1V M2.5 M0 M8 M3 M0 M7 M8 -0.67 -0.27 1.86 0.88 1.26 2.19 2.25 2.47 2.4 1.55 2.74 2.37 2.41 2.53 2.83 1.85 2.4 2.92 1.92 1.95 7.20 4.49 2.66 2.43 2.37 2.18 2.13 2.01 1.99 1.94 1.78 1.76 1.74 1.73 1.70 1.69 1.68 1.63 1.63 1.61 Interferometry Week, ESO Santiago 16-01-02 0.851 0.940 0.978 0.982 0.983 0.986 0.986 0.988 0.988 0.989 0.990 0.990 0.991 0.991 0.991 0.991 0.991 0.992 0.992 0.992 visibility ^2 0.336 0.671 0.872 0.892 0.897 0.912 0.916 0.925 0.927 0.930 0.941 0.942 0.943 0.944 0.946 0.946 0.947 0.950 0.950 0.951 0.000 0.005 0.001 0.014 0.019 0.048 0.059 0.089 0.095 0.110 0.170 0.175 0.184 0.190 0.201 0.207 0.211 0.233 0.237 0.243 28 Statistics of MS cool stars 700 • Select K-M main sequence stars 600 16 m 100 m 500 200 m • V<10, K<5 • Use B-V (measured or estimated) to infer angular diameter • Total ~610 stars • Best targets 90% < Vis < 20% # Stars • Apply Paranal limits 400 300 200 100 0 1 0.98 0.95 0.9 0.5 0.15 0 Visibility A. Richichi Interferometry Week, ESO Santiago 16-01-02 29 Simulated Teff calibration • With 1% absolute error on visibility, errors on the angular diameters are between 1% and 5% 7 8 • Assume 5% error on bolometric flux 10 • Errors in Teff would be 1.8% to 3.8% 11 12 13 4000 3750 3500 3250 3000 7 2750 T eff [K] 8 • Assume 0.5 mag random error on absolute magnitude • Simulate random distribution of 200 stars 9 M Bol M Bol 9 10 11 12 13 4000 3750 3500 3250 3000 2750 T eff [K] A. Richichi Interferometry Week, ESO Santiago 16-01-02 30 Teff of PMS stars Rationale: • Direct Teff measurements do not exist yet • Permit model-independent location of the stars in the HR diagram • Check of theoretical tracks • Implications for age estimates, star and disk formation mechanisms, ... Practical difficulties: • they have very small angular diameters! • a solar precursor ( 5 R ) has 0.30 mas at the distance of Tau-Aur SFR, 0.8 mas at TW Hya • effect of circumstellar environment • effect of spots A. Richichi Interferometry Week, ESO Santiago 16-01-02 31 Surface features in T Tau stars Doppler imaging of the surface of a T Tau star, V410 Tauri. Adapted from Surdin & Lamzin (2001). Desirable to model the effects on visibility. A. Richichi Interferometry Week, ESO Santiago 16-01-02 32 The age and masses of PMS stars From Gomez et al. 1992 Relatively high accuracy is required on Teff 3x105 yrs 1x106 yrs 3x106 yrs 1x107 yrs Mazzitelli (1989) tracks A. Richichi Interferometry Week, ESO Santiago 16-01-02 33 Resolving PMS stars with the VLTI A. Richichi Interferometry Week, ESO Santiago 16-01-02 34 Limb-darkening Same diameter, 3 different LD 1.2000 Visibility 1.0000 0.8000 Important to measure around the first zero of the visibility 0.6000 0.4000 0.2000 0. 00 8. 00 16 .0 0 24 .0 0 32 .0 0 40 .0 0 48 .0 0 56 .0 0 64 .0 0 72 .0 0 80 .0 0 88 .0 0 96 .0 0 0.0000 Baseline [m] A. Richichi Interferometry Week, ESO Santiago 16-01-02 35 Limb-darkening measurements NPOI, 0.65 to 0.85 m 3 baselines 19 to 38 m UD =6.82 mas LD =7.44 mas FD =7.85 mas ~ 0.1mas From Wittkowski et al. (2001) A. Richichi Interferometry Week, ESO Santiago 16-01-02 36 Potential LD measurements with VINCI Psi Phe, preliminary result: =8.3 ±0.3mas analysis by M. Wittkowski ESO/NEVEC IDL DRS A. Richichi Interferometry Week, ESO Santiago 16-01-02 37 Asymmetries Fast rotators. Recent detection of 14% equator/pole flattening in Altair (P=10.4hours, V_eq=210 km/s) For a solar analogue, flattening is 0.001% Flattening ratios up to 20% are expected for many B & A fast rotating stars. Details of visibility curves will depend strongly on orientation of the polar axis, and on surface temperature (brightness) differences. Narrow-band and emission line observations. Good models are required! A. Richichi Interferometry Week, ESO Santiago 16-01-02 38 Binary stars • orbital motions --> masses • different informations from different types of binary systems • frequency among YSOs--> key to star formation • dynamics and evolution of binary/disk systems • “Special binary stars”: BD companions, hot Jupiters Two approaches are available to measure orbital motions: • accurate visibilities (Self-contained, lower precision) • narrow-angle astrometry (wrt to nearby stars) A. Richichi Interferometry Week, ESO Santiago 16-01-02 39 Main parameters of binary systems taken from J. Davis, 1996 A. Richichi Interferometry Week, ESO Santiago 16-01-02 40 Visibilities of binary stars Simulations of some representative cases of binary systems A. Richichi Interferometry Week, ESO Santiago 16-01-02 41 Spica: the full picture taken from J. Davis, 1996 A. Richichi Interferometry Week, ESO Santiago 16-01-02 42 Binaries among YSO Apparent excess of binary stars in Taurus/Auriga, wrt to the solar stars in the solar neighbourhood. Possible excess in Oph/Sco. No excess in Orion. VIMA VISA VIMA A. Richichi Interferometry Week, ESO Santiago 16-01-02 43 What can the VLTI do? Short term Long Term Survey nearby SFRs Nearby SFRs • Resolution range • Orbits close binaries • Include all stars • Disks Benefits Distant SFRs • Calibration • Potential x103 • Fast science results • Diversity Spectroscopy • SF mechanisms • IR spec. binaries Extended SEDs Survey distant SFRs • IR companions • Include fainter stars A. Richichi Interferometry Week, ESO Santiago 16-01-02 44 Accurate visibilities vs. diffraction limit 1.0 0.8 Visibility 21.3% 0.6 1.00 mas 1.10 mas 0.4 0.2 0.0 0 20 40 60 80 100 120 140 160 180 200 Baseline [m] A. Richichi Interferometry Week, ESO Santiago 16-01-02 45 Orbital motions from accurate visibilities Binary with two point sources, 1:50 Br. Ratio, J band 1.00 Visibility 0.2% 1.00 mas 1.01 mas 0.95 0.90 0 20 40 60 80 100 120 140 160 180 200 Baseline [m] A. Richichi Interferometry Week, ESO Santiago 16-01-02 46 Orbital motions by phase referencing Narrow-angle astrometry can measure the separation from a distant reference star with 10as accuracy • Orbital motions in a 10AU system (P30 yrs) at 50pc (0.2” separation) could be detected in one day. • A. Richichi Interferometry Week, ESO Santiago 16-01-02 47 Circumstellar Structure Close circumstellar shells Mass loss Close companions, tidal interactions Jets A. Richichi Interferometry Week, ESO Santiago 16-01-02 48 IRC +10216 Note: no long-baseline interferometric observations yet! A. Richichi Interferometry Week, ESO Santiago 16-01-02 49 Atmospheres of AGB stars HST observation of Mira (Karovska et al. 1997) A. Richichi Interferometry Week, ESO Santiago 16-01-02 50 Circumstellar emission From Mennesson et al. (2000). A. Richichi Interferometry Week, ESO Santiago 16-01-02 51 Asymmetric envelope with the VLTI Normalized Diameter Diameter vs. Hour Angle 1.02 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 UT Time A. Richichi Interferometry Week, ESO Santiago 16-01-02 52 VLTI commissioning observations of Mira 33.00 Ang. Diam (mas) 32.00 23-Oct 31.00 24-Oct 30.00 10-Nov 29.00 16-Nov 28.00 18-Nov 27.00 26.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 Hour Angle A. Richichi Interferometry Week, ESO Santiago 16-01-02 53 Detection of the envelope around Mira 40.0 38.0 36.0 34.0 32.0 23-Oct 24-Oct 30.0 10-Nov 16-Nov 28.0 18-Nov 26.0 24.0 22.0 20.0 -20.0 A. Richichi -15.0 -10.0 Interferometry Week, ESO Santiago 16-01-02 -5.0 0.0 54 The environment around YSO 500 AU A. Richichi Interferometry Week, ESO Santiago 16-01-02 Model for IRAS 16293:1629, adapted from Surdin & Lamzin (2001) 55 Herbig AeBe stars HAEBEs are young intermediate mass PMS stars Ages in the 105 and 107 yrs range, distances 100-300pc Masses in the 2-8 M range Analogue to T Tauris Likely progenitors of Vega-like debris disk stars Very large IR excess due to CS material in a disk, possible site of planetary formation some have mm interferometry sizes of several 100AU (~sec”) ~1AU in K, 10-20AU in N slides from R. van Boekel, F. Paresce A. Richichi Interferometry Week, ESO Santiago 16-01-02 56 Disks around Herbig AeBe stars SED can be reproduced by a passive irradiated flaring disk model (Dullemond et al., 2001) determined mainly by: m, L, Te and d of star (known) total mass and opacity of dust Rin, Rout inner and outer disk radius Hrim, height of inner wall inclination of disk to LOS VLTI Objective is to test the spatial predictions of the model and to strongly constrain free parameter space 57 Model visibilities and parameters A. Richichi Interferometry Week, ESO Santiago 16-01-02 58 Other parameters A. Richichi Interferometry Week, ESO Santiago 16-01-02 59 Consistency with SED A. Richichi Interferometry Week, ESO Santiago 16-01-02 60 Observations of T Tau Akeson et al. 2001 A. Richichi Interferometry Week, ESO Santiago 16-01-02 61 Refining dust models by interferometry Akeson et al. 2001 A. Richichi Interferometry Week, ESO Santiago 16-01-02 62 Measuring distances by interferometry Parallax Astrometry is possible with some interferometers. Precisions of 10-100 arcsec are possible. Cepheids Traditionally the standard candles in the distance scale. The angular diameter of the nearest ones is now potentially within reach of interferometers. Eclipsing Spectroscopic Binaries An alternative standard candle. A. Richichi Interferometry Week, ESO Santiago 16-01-02 63 Cepheid Stars Rationale: • Period-Luminosity Law • Standard Candle • Non-Radial modes? • Details of pulsation lightcurves not yet completely understood What modern interferometry can achieve: • Measurement of angular diameters, with spectacular improvement over current data • A priori information available, high efficiency • Repeated measurements necessary A. Richichi Interferometry Week, ESO Santiago 16-01-02 64 Some Cepheids visibile from Paranal ^2 Data provided by P. Kervella A. Richichi Interferometry Week, ESO Santiago 16-01-02 65 Zeta Gem Simulated Observations of Zeta Geminorum with VINCI/VLTI Siderostats Angular size (milliarcsec) 1.750 Single measurement: +/- 4 mas Absolute calibration: +/- 9 mas 1.700 IOTA/Fluor 1.650 Kervella et al. (2000) 1.600 1.550 1.500 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Phase Simulation by P. Kervella A. Richichi Interferometry Week, ESO Santiago 16-01-02 66 1 Eclisping spectroscopic binaries Rationale: • Eclipses give orbital elements in absolute units • By-product: stellar radii (calibration, still uncertain, could yield distance) • Astrometric orbit: yield distance with higher accuracy • Use as a standard candle Furthermore: • Case of binaries with partially resolved discs • Characteristics (br. ratio, period, epoch) can be estimated in advance, high efficiency • Repeated measurements desirable A. Richichi Interferometry Week, ESO Santiago 16-01-02 67 Orbits of well-detached eclipsing binaries A. Richichi Interferometry Week, ESO Santiago 16-01-02 68 Orbits of contact eclipsing binaries A. Richichi Interferometry Week, ESO Santiago 16-01-02 69 Eclipsing binaries as M-m indicators Distance to the LMC from the eclipsing binary HV 2274 (Guinan et al. 1998, Udalski et al. 1998). Uncertainty due to reddening introduces a significant difference in the [M-m] (18.47 vs. 18.22) A. Richichi Interferometry Week, ESO Santiago 16-01-02 70 Some eclipsing binaries from Paranal Cross–Identifications Zet Phe Del Lib TZ For TY Pyx SZ Psc V624 Her HU Tau Z Her CD Tau ZZ Boo GG Lup U Oph Coordinates d 1.0823082 15.0058349 3.1440093 8.5942722 23.1323786 17.4417247 4.3815830 17.5806980 5.1731153 13.5609518 15.1856375 17.1631716 -55.144474 -8.310820 -35.332759 -27.485869 2.403158 14.243624 20.410500 15.082190 20.075463 25.550736 -40.471760 1.123796 Quick referecence data V K Spectrum a[mas] estim. 3.97 4.95 6.89 6.90 7.44 6.20 5.86 7.27 6.77 6.78 5.59 5.90 4.3 5.0 5.3 5.3 5.6 5.8 5.9 5.9 5.9 5.9 5.9 5.9 B6V+... B9.5V G2V G5V K1IV-V+... A3m B8V F4IV-V F7V F2V B7V B5Vnn+... 0.598 0.684 3.254 1.021 0.792 0.540 0.506 0.716 0.848 0.765 0.351 0.315 Data provided by B. Paczynski A. Richichi Interferometry Week, ESO Santiago 16-01-02 71 The hunt for extrasolar planets Need direct detection, to derive separation and resolve the orbital parameters. Interferometry is the most promising technique from the ground. Mass function of extrasolar planets in units of Jupiter mass detected so far out of ~1000 72 stars from Queloz (ESA SP-451, 2000) Extrasolar planets as special binary stars 73 Astrometry with PRIMA Phased implementation plan Accuracy: 50 arcsec initially, later 10 arcsec Reference star within 30” Limiting magnitudes eventually K>18 UTs, 15 ATs. equip ATs first, later UTs A. Richichi Interferometry Week, ESO Santiago 16-01-02 74 Detection without PRIMA From Lopez & Petrov (1999) A. Richichi Interferometry Week, ESO Santiago 16-01-02 75 Extragalactic Science • Quasars, AGNs, Seyferts • SNe in distant galaxies Requirements Can we find a reference star nearby? PRIMA! • Limit set by AT/UT, wavelength, visibility, field separation • Statistical approach What can we expect to measure? • Issue of field of view, imaging vs. parametric models • Does [magnitude x visibility] kill us? A. Richichi Interferometry Week, ESO Santiago 16-01-02 76 NGC 1068 NGC 1068 observed with AO (K, H) [Rouan et al. 1998] Kmag=9.3 witin 0.2”. A. Richichi [J-H]=7.0 [H-K]=3.8 Interferometry Week, ESO Santiago 16-01-02 77 The visibility of NGC 1068 NGC 1068 by speckle Wittkowski et al. (1998) K band, 6m (0.076mas) Note: when the visibility goes down, the SNR goes down. A. Richichi Interferometry Week, ESO Santiago 16-01-02 78 The issue of image complexity Model 4 telescopes, 6 hours 8 telescopes, 6 hours Simulation made by C. Haniff (COAST) 79 SN and transient phenomena Position of photocenter wrt nearby bright star t1 New position of photocenter Phase Shift t2 A. Richichi Interferometry Week, ESO Santiago 16-01-02 80 Microlensing Delplancke, Gorski, Richichi (2001) A. Richichi Interferometry Week, ESO Santiago 16-01-02 81 Photocenter wobble A. Richichi Interferometry Week, ESO Santiago 16-01-02 82 The neutron star RX J185635-3754 Min_d=300 mas MF606W=26.5 Using D=61pc M=1.4M Predicted shift=0.6mas Duration ~1 year Aim: direct mass determination of an isolated neutron star, with high accuracy and independently of model assumptions. A. Richichi Interferometry Week, ESO Santiago 16-01-02 83 The size of Trans-Neptunian Objects Aim: direct determination of the diameter of TNO. The largest one, recently observed with AVO, has a size of 1200km @ 1.5DN, or ~40mas. VLTI case: one can measure ~10x smaller TNOs with the VLTI. The luminosity will decrease correspondingly. KX76 has K~18, so we need to go fainter than that. At the same time, UT measurements of objects as large as KX76 will sample the visibility beyond the first minimum, permitting studies on 2nd order geometrical properties. A. Richichi Interferometry Week, ESO Santiago 16-01-02 84 MIDI overview Instrument Overview - MIDI MIDI [D/F/NL; PI: Heidelberg] Paranal: November 2002 First Fringes with UTs: December 2002 Mid IR instrument (10–20 m) , 2-beam, Spectral Resolution: 30-260 Limiting Magnitude N ~ 4 (1.0Jy, UT with tip/tilt, no fringe-tracker) (0.8 AT) N ~ 9 (10mJ, with fringe-tracker) (5.8 AT) Visibility Accuracy 1%-5% Airy Disk 0.26” (UT), 1.14” (AT) Diffraction Limit [200m] A. Richichi 0.01” Interferometry Week, ESO Santiago 16-01-02 85 AMBER overview AMBER [F/D/I; PI: Nice] Paranal: January 2003 First Fringes with UTs (AO): July 2003 Near IR Instrument (1–2.5 m) , 3-beam combination (closure phase) Spectral dispersion: ~35, ~1000, ~10000 Limiting Magnitude K =11 (specification, 5, 100ms self-tracking) J=19.5, H=20.2, K=20 (goal, FT, AO, PRIMA, 4 hours) Visibility Accuracy Airy Disk 1% (specification), 0.01% (goal) 0.03”/0.06” (UT), 0.14”/0.25” (AT) [J/K band respectively] Diffraction Limit [200m] A. Richichi 0.001” J, 0.002” K Interferometry Week, ESO Santiago 16-01-02 86 MIDI Goals for GTO, first runs A. Richichi Interferometry Week, ESO Santiago 16-01-02 87 AMBER Scientific Drivers A. Richichi Interferometry Week, ESO Santiago 16-01-02 88 Idiosyncrasies of interferometry ☼ two telescopes do not point as one ☼ night shadows on Paranal ☼ left is right, up is down, 30 = 435 = 254 = 10! ☼ get your dark hours right ☼ magnitudes are not your usual magnitudes ☼ integration time and Earth rotation ☼ living in Fourier space ☼ always shoot in the right spot ☼ calibrate, calibrate, calibrate! A. Richichi Interferometry Week, ESO Santiago 16-01-02 89 Calibrators! VLTI October 24-25, 2001 Vm,1= Vo,1 73.0% Vm,2= Vo,2 Transfer Function 71.0% 69.0% Cal 1 Cal 2 Cal 3 Cal 4 67.0% 65.0% =transfer f. 63.0% 61.0% 6: 41 5: 52 5: 01 4: 34 4: 11 3: 43 2: 55 2: 01 0: 38 59.0% UT TIME A. Richichi Interferometry Week, ESO Santiago 16-01-02 Aver. Cal 1 w.m Cal 2 w.m. Cal 3 Cal 4 w.m. 67.3% 67.7% 68.6% 65.2% 62.8% 90 2.3% 0.2% 0.2% 0.4% 1.0% Fringes on the WEB ESO VLTI: http://www.hq.eso.org/projects/vlti/ AMBER and MIDI: http://buz.obs-nice.fr/amber/ http://www.mpia-hd.mpg.de/MIDI/ This presentation: http://www.eso.org/~arichich/download/iwtutorial/