Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Imaging biomarkers in breast oncology practice Elizabeth O’Flynn Clinical Lecturer and Consultant Radiologist Institute of Cancer Research and Royal Marsden Hospital, London, United Kingdom Background Neoadjuvant chemotherapy (NAC): Clinical response rates 70–98%1,2 Pathological complete response (pCR) 3–16%3 Pre-treatment Pre-treatment Tumour Post-treatment (pCR) End of treatment Signal void from marker 1. Powles TJ, et al. J Clin Oncol 1995;13:547–552; 2. Fisher B, et al. J Clin Oncol 1998;16:2672–2685; 3. Swain SM, et al. Cancer Res 1987;47:3889–94. Images courtesy of Dr Elizabeth O’Flynn. Predicting response 1. After completion of NAC to guide surgery 2. At baseline (prior to commencing NAC) 3. At an early time point (1 or 2 cycles after commencing NAC) Predicting response after completion of NAC MRI gives more accurate staging compared to clinical examination mammography and US1–4 Pooled mean difference (95% confidence intervals) (cm) Author n MRI Clinical exam Marinovich et al. 2013 19 0.1 (-0.2, 0.3) -0.3 (-0.7, 0.0) Mammo US 0.4 (-0.5, 1.3) 0.1 (-0.1, 0.4) 1. Chagpar AB, et al. Ann Surg 2006;243:257–264; 2. Akawawa K, et al. Breast J 2006;12:130–137; 3. Montemurro F, et al. Eur Radiol 2005,15:1224–1233; 4. Marinovich ML, et al. Br J Cancer 2013;109:1528–1536. Underestimation of residual disease Pre-treatment Tumour Images courtesy of Dr Elizabeth O’Flynn. Post-treatment Tumour reduced enhancement Overestimation of residual disease Pre-treatment Tumour Images courtesy of Dr Elizabeth O’Flynn. Post-treatment Residual enhancement Predicting response after completion of NAC n Sensitivity (%) Specificity (%) PPV NPV AUC De Los Santos et al. 20131 746 83 47 47 83 74 Hayashi et al. 20132 260 44 90 73 73 78 Ko et al. 20133 166 96 65 - - 89 Chen et al. 20124 64 39 92 - - - Hylton et al. 20125 216 - - - - 84 Author 1. De Los Santos JF, et al. Cancer 2013;1777–1783; 2. Hayashi Y, et al. Oncol Lett 2013;5:83–89; 3. Ko ES, et al. Ann Surg Oncol 2013;20:2562–2568; 4. Chen et al. Chin Med J 2012;125:1862–1866; Hylton NM. et al. Radiology 2012;263:663–672. Predicting response after completion of NAC n Sensitivity (%) Specificity (%) PPV NPV AUC De Los Santos et al. 20131 746 83 47 47 83 74 Hayashi et al. 20132 260 44 90 73 73 78 Ko et al. 20133 166 96 65 - - 89 Chen et al. 20124 64 39 92 - - - Hylton et al. 20125 216 - - - - 84 Author 1. De Los Santos JF, et al. Cancer 2013;1777–1783; 2. Hayashi Y, et al. Oncol Lett 2013;5:83–89; 3. Ko ES, et al. Ann Surg Oncol 2013;20:2562–2568; 4. Chen et al. Chin Med J 2012;125:1862–1866; Hylton NM; et al. Radiology 2012;263:663–672. Molecular subtypes of breast cancer Molecular subtype Biomarker profile Prevalence Luminal A ER+ and/or PR+, HER2-, low Ki67<14% 42-59% Luminal B ER+ and/or PR+ and HER2+ ER+ and/or PR+, HER2-, high Ki67>14% 6-19% ER-, PR- , HER2-, cytokeratin 5/6+ and/or EGFR+ 14-20% ER-, PR-, HER2+ 7-12% Basal-like/ triple negative HER2 ER = oestrogen receptor PR = progesterone receptor HER2 = human epidermal growth factor receptor 2 EGFR = epidermal growth factor receptor Carey LA, et al. JAMA 2006;295:2492–2502; Nielsen TO, et al. Clin Cancer Res 2004;10:5367–5374; Perou CM, et al. Nature 2000;406:747–752; Rakha EA, et al. Eur J Cancer 2006;42:3149–3156; Sorlie T, et al. Proc Natl Acad Sci USA 2001; 98:10869–10874 MRI predicting response through subtype Author n Findings Hayashi et al. 20131 264 Better accuracy in triple negative cancers Ko et al. 20132 166 Worse accuracy in ER positive cancers and low grade tumours Chen et al. 20123 50 Better accuracy in triple negative cancers and high grade tumours McGuire et al. 20114 203 Better accuracy in ER negative/ HER2 positive cancers Worse accuracy in luminal cancers Kuzucan et al. 20125 54 Worse accuracy in hormone positive cancers and low grade tumours De Los Santos et al. 20136 746 Better accuracy in triple negative / HER2 positive cancers 1. Hayashi Y, et al. Oncol Lett 2013;5:83–89; De Los Santos JF, et al. Cancer 2013;1777–1783; 2. Ko ES, et al. Ann Surg Oncol 2013;20:2562–2568; 3. Chen et al. Chin Med J 2012;125:1862–1866; 4. McGuire KP et al. Ann Surg Oncol Ann Surg Oncol 2011;18:3149–3154; 5. Kuzucan A, et al. Clin Breast Cancer 2012;12:110–118; 6. De Los Santos JF, et al. Cancer 2013;1777–1783. MRI predicting response through subtype Author n Findings Hayashi et al. 20131 264 Better accuracy in triple negative cancers Ko et al. 20132 166 Worse accuracy in ER positive cancers and low grade tumours Chen et al. 20123 50 Better accuracy in triple negative cancers and high grade tumours McGuire et al. 20114 203 Better accuracy in ER negative/ HER2 positive cancers Worse accuracy in luminal cancers Kuzucan et al. 20125 54 Worse accuracy in hormone positive cancers and low grade tumours De Los Santos et al. 20136 746 Better accuracy in triple negative / HER2 positive cancers 1. Hayashi Y, et al. Oncol Lett 2013;5:83–89; De Los Santos JF, et al. Cancer 2013;1777–1783; 2. Ko ES, et al. Ann Surg Oncol 2013;20:2562–2568; 3. Chen et al. Chin Med J 2012;125:1862–1866; 4. McGuire KP et al. Ann Surg Oncol 2011;18:3149– 3154; 5. Kuzucan A, et al. Clin Breast Cancer 2012;12:110–118; 6. De Los Santos JF, et al. Cancer 2013;1777–1783. MRI predicting response through subtype Author n Findings Hayashi et al. 20131 264 Better accuracy in triple negative cancers Ko et al. 20132 166 Worse accuracy in ER positive cancers and low grade tumours Chen et al. 20123 50 Better accuracy in triple negative cancers and high grade tumours McGuire et al. 20114 203 Better accuracy in ER negative/ HER2 positive cancers Worse accuracy in luminal cancers Kuzucan et al. 20125 54 Worse accuracy in hormone positive cancers and low grade tumours De Los Santos et al. 20136 746 Better accuracy in triple negative / HER2 positive cancers 1. Hayashi Y, et al. Oncol Lett 2013;5:83–89; De Los Santos JF, et al. Cancer 2013;1777–1783; 2. Ko ES, et al. Ann Surg Oncol 2013;20:2562–2568; 3. Chen et al. Chin Med J 2012;125:1862–1866; 4. McGuire KP et al. Ann Surg Oncol 2011;18:3149– 3154; 5. Kuzucan A, et al. Clin Breast Cancer 2012;12:110–118; 6. De Los Santos JF, et al. Cancer 2013;1777–1783. Triple negative breast cancer High T2 centrally T2W MRI Enhancing rim T1W DCE-MRI Restricted diffusion rim DWI b=1150 ADC map Dogan BE et al. Am J Roentgenol 2010;194:1160–1166; Chen JH, et al. Ann Oncol 2007:18:2042–2043; Wang Y, et al. Radiology 2008;246:367–375; Noh JM, et al. J Breast Cancer 2013;16:308–314. Images courtesy of Dr Elizabeth O’Flynn. MRI accuracy for residual disease Author n Study Sensitivity Specificity Lobbes et al. 20131 35 Systematic review Range 25 - 100% Range 50 - 97% Meta-analysis Pooled estimate 83 - 87% Pooled estimate 54 - 83% Marinovich et al. 20132 44 1. Lobbes MB, et al. Insights Imaging 2013;4:163–175; 2. Marinovich L, et al. J Natl Cancer Inst 2013;105:321–333. Imaging techniques for predicting pCR in restaging the axilla post NAC Technique n Author Sensitivity Specificity PPV NPV Clinical exam 32 Arimappamagan et al. 2004 86 64 40 94 US 32 Arimappamagan et al. 2004 Heiken et al. 2013 86 100 100 96 58 70 57 71 MRI 88 Heiken et al. 2013 59 61 43 75 Nomogram 291 Schipper et al. 2014 43 88 65 75 Schipper et al. Eur J Radiol 2015;84:41–47 Predicting response at baseline Author n Factors predictive of response Li et al. 20101 264 Traditional prognostic factors Uematsu et al. 20102 166 Mass effect and wash-out pattern Park et al. 20103 50 Lower pre-treatment ADC Fangberget et al. 20114 264 HER2 overexpression 1. Li SP, et al. Radiology 2010;257:643–652; 2. Uematsu T, et al. Eur Rad 2010;20:2315-–2322; 3. Park SH, et al. Radiology 2010; 257:56–63; 4. Fangberget A, et al. Eur Radiol 2011;21:1188–1199. Predicting response at an early time point Standard Measurements (RECIST) Dynamic Contrast Enhanced MRI (DCE-MRI) MR Spectroscopy MRI DiffusionWeighted Imaging (DWI) Intrinsic Susceptibility Weighted MRI (R2*) Tumour diameter Tumour volume Standard Measurements (RECIST) Time-signal Intensity curves Ktrans, kep, ve Dynamic Contrast Enhanced MRI (DCE-MRI) MRI b=1150 Apparent Diffusion Coefficient (ADC) MR Spectroscopy Choline peak at 3.2ppm DiffusionWeighted Imaging (DWI) Images courtesy of Dr Elizabeth O’Flynn. Intrinsic Susceptibility Weighted MRI (R2*) R2*=1/T2* MRI parameters Tumour Diameter Tumour Volume Standard Measurements (RECIST) MRI Image courtesy of Dr Elizabeth O’Flynn. MRI parameters VASCULARITY Dynamic Contrast Enhanced MRI (DCE-MRI) Images courtesy of Dr Elizabeth O’Flynn. Semi-quantitative parameters: Time-signal intensity curves Maximum signal intensity Absolute MRI signal intensity Relative MRI signal intensity Normalised MRI signal intensity Initial Area Under the Gadolinium Curve (IAUGC) Enhancement Fraction Pharmacokinetically modelled parameters: Ktrans kep Ve Textural analysis Dynamic contrast enhanced (DCE)-MRI Gd-DTPA iv injection Endothelial cells3 renal excretion Blood plasma Ktrans Transfer constant kep rate constant Pericyte – red3 Ve extravascular extracellular space Pharmacokinetic modelling1,2 Normal Tumour 1. Courtesy of O’Flynn EAM, et al. Breast Cancer Research 2011;13:204; 2. Tofts PS, et al. J Magn Reson Imaging 1999;10:223–232; 3. McDonald DM, et al. Nat Med 2003;9:713–725. Reprinted by permission from Macmillan Publishers Ltd: Nature Medicine, © 2003 DCE-MRI Assessing treatment response Author Ah-See et al. 20081 Pickles et al. 20052 Padhani et al. 20063 Yu et al. 20074 Yu et al. 20105 Time point imaged after NAC n Responders Nonresponders 19 Ktrans ↓ 40% kep ↓ 33% Ktrans ↑ 18% kep ↑ 7% 2 cycles 68 Ktrans ↓ 20% kep ↓ 20% ve ↑ 4% Ktrans ↓ 20% kep ↓ 36% ve ↑ 28% “early time point” 15 Ktrans ↓ 22% kep ↓ 62% Ktrans ↓ 7% kep ↓ 25% 1 cycle 2 cycles 29 Ktrans ↓ 5% kep ↓ 14% Ktrans ↑ 8% kep ↑ 7% 1 cycle 32 Ktrans ↓ 49% ve ↓ 27% Ktrans ↓ 18% ve ↓ 13% 2 cycles 1. Ah-See ML, et al. Clin Can Res 2008;14:6580–6589; 2. Pickles MD, et al. Breast Cancer Res Treat 2005;91:1–10; 3.Padhani et al. Radiology 2006;239:361–374; 4. Yu JH, et al. J Magn Reson Imaging 2007;26:615–623; 5.Yu Y, et al. Radiology 2010;257:47–55. MRI parameters DWI b=1150 ADC map CELLULARITY DiffusionWeighted Imaging (DWI) Images courtesy of Dr Elizabeth O’Flynn. ADC = Apparent Diffusion Coefficient Diffusion-Weighted Imaging (DWI) Sensitive to factors affecting microscopic motion of water Tumour Normal tissue ● ● Random Brownian Motion cell ● water molecule Free diffusion Low signal intensity DWI High signal ADC ● Restricted diffusion High signal intensity DWI Low signal ADC ADC = Apparent Diffusion Coefficient DWI b=0 b = 350 In (S/S0 b = 700 b = 1150 ADC map S = S0e-b.ADC b (s/mm2) ADC = Apparent Diffusion Coefficient Images courtesy of Dr Elizabeth O’Flynn. DWI Normalised ADC values reproducible1 DWI has shown an increase in ADC prior to any change in breast tumour size2 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 Rise in ADC Tumour size static 0 1 Treatment cycles ADC (normalised) 2 Diameter (normalised) 1. O’Flynn EA, et al. Eur Radiol 2012;22:1512–1518; 2. Pickles MD, et al. Magn Reson Imaging 2006;24:843–847 DWI – Assessing treatment response Author n Responders Time point imaged after NAC Pickles et al. 20061 10 ADC ↑ 16% ADC↑ 27% 1 cycle 2 cycles ADC ↑ 15% ADC ↑ 27% ADC ↑35% 1 cycle 2 cycles 3 cycles 14 Sharma et al. 20092 24 29 Nilsen et al. 20103 25 ADC ↑ 25% 4 cycles Fangberget et al. 20114 29 ADC ↑ 40% 4 cycles 1. Pickles MD, et al. Magn Reson Imaging 2006;24:843–847; 2. Sharma U, et al. NMR Biomed 2009;22:104–113; 3. Nilsen l, et al. Acta Oncol 2010;49:354–360; 4. Fangberget A, et al. Eur Radiol 2011;21:1188–1199. MRI parameters METABOLISM MR Spectroscopy Magnified spectrum illustrates a positive Choline peak at a frequency of 3.2 ppm Voxel over enhancing tumour Graph courtesy of Dr Geoffrey Payne Image courtesy of Dr Elizabeth O’Flynn Spectroscopy – Assessing treatment response Author n Responders Non-responders Time point imaged after NAC Jacobs et al. 20111 18 [Cho] ↓ 35% [Cho] ↓ 11% 1 cycle Tozaki et al. 20102 16 [Cho] ↓ 56% [Cho] ↓ 24% 2 cycles Baek et al. 20093 35 [Cho] ↓ 68% [Cho] ↓ 37% [Cho] ↓ 28% [Cho] ↓ 49% [Cho] ↓ 94% [Cho] ↓ 8% [Cho] ↓ 16% [Cho] ↓ 39% Danishad et al. 20104 25 2 cycles 1 cycle 2 cycles 3 cycles 1. Jacobs MA, et al. Breast Cancer Res Treat 2011;128:119–126; 2. Tozaki M, et al. J Magn Reson Imaging 2010 ;31:895–902; 3. Baek HM, et al. Radiology 2009;251:653–662; 4. Danishad, et al. NMR Biomed 2010;23:233–241. MRI parameters OXYGENATION T2* sequence multiple echo times R2* map Intrinsic Susceptibility Weighted MRI (R2*) Images courtesy of Dr Elizabeth O’Flynn. R2*=1/T2* Intrinsic susceptibility weighted imaging / R2* Breast cancer patients R2* lower in tumour than normal parenchyma prior to chemo Author n Responders Time point imaged after NAC Li et al. 2010 27 ↑ 10% 2 cycles Li SP, et al. Radiology 2010;257:643–652. Early prediction of response Authors Prevos et al. 20121 Authors Hylton et al. 20122 Study n Systematic review 15 Study n I-SPY 216 Findings Most frequently studies parameters: Tumour diameter or volume Ktrans, kep, ve, ADC Findings MR Imaging findings stronger predictor of pCR than clinical exam Greatest advantage observed using volumetric measurement of tumour response early in treatment I-SPY TRIAL: Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 1. Prevos R, et al. Eur Rad 2012;22:2607–2616; Hylton NM, et al. Radiology 2012;263:663–672. Multiparametric MRI Improved diagnostic accuracy combining DCE-MRI, DWI and MR Spectroscopy Change in enhancement fraction after 2 cycles was the best discriminator of response Images courtesy of Dr Elizabeth O’Flynn 1. Pinker K, et al. Invest Radiol 2014;49:421–430; 2. O’Flynn EA, et al. ISMRM Proceedings. 2014. Summary Many MRI parameters and time points at which to predict response No definite advantage of MRI assessment over US but more larger scale studies needed Tumour subtype plays a crucial role accuracy of MRI Assessment of tumour volume and the ADC hold most potential for incorporation into routine clinical practice Standardisation required Acknowledgments ICR The Institute of Cancer research Cancer Research UK The Royal Marsden – NHS Foundation Trust THANK YOU!