Download n(E) - Telkom University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Statistical Physics
Statistical Distribution
Understanding the distribution of certain energy among particle members and their
most probable behavior.
n(E) = g(E) f(E)
E3
E3
E2
E1
n(E) : number of particles with energy E
g(E) : number of state with energy E
F(E) : distribution function
average number of particles in each
states with energy E
probability of occupancy of each state
with energy E
Statistical Distribution Law
1. Maxwell –Boltzmann Statistics
Distribution of identical particles which are widely separated. Example: gas molecules
𝑛 𝐸 = 𝐴 𝑔 𝐸 𝑒 βˆ’πΈ /π‘˜π΅ 𝑇
2. Bose Einstein Distribution
For identical particles with spin 0 or integer/boson. Example: photon, phonon.
𝑛 𝐸 =𝐴
𝑔 𝐸
𝑒 𝛼 𝑒 βˆ’πΈ /π‘˜π΅ 𝑇 βˆ’ 1
3. Fermi Diract Distribution
For particles with odd half-integer spin/fermion (1/2, 3/2, ...). Example: electron
𝑛 𝐸 =𝐴
𝑔 𝐸
𝑒 𝛼 𝑒 βˆ’πΈ /π‘˜π΅ 𝑇 + 1
Example:
A cointainer has 1025 hydrogen atoms at 00 and atmospheric pressure. If possible
quntum states for each qunatum number n is 𝑔 𝐸𝑛 = 2𝑛2 . Find the number of
atoms at first excited states (n=2)
Molecular Energy in Ideal Gas
Following Maxwell-Botlzmann Distribution
𝑛 𝐸 𝑑𝐸 = 𝐴 𝑔 𝐸 𝑒 βˆ’πΈ /π‘˜π΅ 𝑇 𝑑𝐸
The easiest way is to find the relation between momentum and energy because
𝑝2 = 2π‘šπΈ
Imagine the particles are distributed within a sphere with radius p. Each particle in
certain state with energy E has momentul p
Number of momentum states
𝑔 𝑝 𝑑𝑝 = 𝐡𝑝2 𝑑𝑝
Number of energy states
𝑔 𝐸 𝑑𝐸 = 𝑔 𝑝 𝑑𝑝 = 𝐡𝑝2 𝑑𝑝
= 𝐡 2π‘šπΈ π‘š 𝑑𝐸/ 2π‘šπΈ
Number of molecules in energy state between E and dE
𝑛 𝐸 𝑑 𝐸 = 𝐢 𝐸𝑒 βˆ’πΈ/π‘˜π΅ 𝑇 𝑑𝐸
To calculate C, use normalization for total molecules N
∞
𝐢 𝐸𝑒 βˆ’πΈ/π‘˜π΅π‘‡ 𝑑𝐸
𝑁=
0
Remember
∞
0
𝐢
𝑁=
πœ‹ π‘˜π΅ 𝑇
2
π‘₯𝑒 βˆ’π‘Žπ‘₯ 𝑑π‘₯ =
1
2π‘Ž
πœ‹
π‘Ž
3/2
Molecular Energy Distribution
𝐸
2πœ‹π‘
βˆ’π‘˜ 𝑇
𝑛 𝐸 𝑑𝐸 =
𝐸𝑒 𝐡 𝑑𝐸
3/2
πœ‹π‘˜π΅ 𝑇
2πœ‹π‘
𝐢=
πœ‹π‘˜π΅ 𝑇 3/2
Total energy of N molecule
∞
𝐸=
0
2πœ‹π‘
𝐸 𝑛 𝐸 𝑑𝐸 =
πœ‹π‘˜π΅ 𝑇 3/2
Remember
∞ 3/2 π‘Žπ‘₯
π‘₯ 𝑒 𝑑π‘₯
0
3
= 4π‘Ž2
Average Molecular Energy
𝐸 3
𝐸 = = π‘˜π΅ 𝑇
𝑁 2
∞
𝐸 3/2 𝑒 βˆ’πΈ/π‘˜π΅ 𝑇 𝑑𝐸
0
πœ‹
π‘Ž
3
= π‘π‘˜π΅ 𝑇
2
Distribution of Molecular Speed
𝐸=
1
π‘šπ‘£ 2
2
𝑑𝐸 = π‘šπ‘£π‘‘π‘£
π‘š
𝑛 𝑣 𝑑𝑣 = 𝑛 𝐸 𝑑𝐸 = 4πœ‹π‘
2πœ‹π‘˜π‘‡
3/2
𝑣 2 𝑒 βˆ’π‘šπ‘£
2 /2π‘˜ 𝑇
𝐡
𝑑𝑣
Average molecular speed
1
𝑣=
𝑁
∞
𝑣 𝑛 𝑣 𝑑𝑣 =
0
8π‘˜π΅ 𝑇
πœ‹π‘š
Remember
∞ 3 βˆ’π‘Žπ‘₯
π‘₯ 𝑒
𝑑π‘₯
0
The RMS speed
π‘£π‘Ÿπ‘šπ‘  = 𝑣^2 =
3π‘˜π΅ 𝑇
π‘š
Remember
1
2
π‘šπ‘£
2
3
= 2 π‘˜π΅ 𝑇
1
= 2π‘Ž2
Planck Radiation
∈=
β„Žπ‘£
𝑒 β„Žπ‘£ /π‘˜π΅ 𝑇 βˆ’ 1
Wien’s displacement
πœ†π‘šπ‘Žπ‘₯ 𝑇 = 2.898 × 10βˆ’3 m.K
Stefan-Boltzaman Law
Energi radiated by an object per second
𝑅 = π‘’πœŽπ‘‡ 4 , with 𝜎 = 5.67 × 10βˆ’8 W/m^2K^4
Specific Heat of Solids
Classical internal Energy of solid
𝐸 = 3π‘π‘˜π΅ 𝑇 = 3𝑅𝑇
𝑅 = 𝑁𝐾𝐡 = 8,31 × 103 J/mol.K
Specific Heat at constant volume
𝐢𝑣 =
πœ•πΈ
πœ•π‘‡ 𝑉
= 3𝑅 = 24.93 J/mol.K
Dulong Petit law
Einstein Formula
Probability for an oscilator to have frequency 𝑣
𝑓 𝑣 =
1
β„Žπ‘£
𝑒 π‘˜π΅ 𝑇
βˆ’1
Average energy per oscilator
𝐸=
Internal Energy of Solid
β„Žπ‘£
β„Žπ‘£
𝑒 π‘˜π΅ 𝑇
𝐸=
βˆ’1
Einstein specific heat formula
πœ•πΈ
𝑐𝑉 =
πœ•π‘‡
𝑉
β„Žπ‘£
= 3𝑅
π‘˜π΅ 𝑇
2
𝑒 β„Žπ‘£/π‘˜π΅ 𝑇
2
β„Žπ‘£
𝑒 π‘˜π΅ 𝑇 βˆ’1
3π‘β„Žπ‘£
β„Žπ‘£
π‘˜
𝑒 𝐡𝑇
βˆ’1
Einstein Model at high temperature
β„Žπ‘£ β‰ͺ π‘˜π΅ 𝑇
π‘₯
Remember : 𝑒 β‰ˆ 1 + π‘₯ +
β„Žπ‘£
π‘˜
𝑒 𝐡𝑇
𝐸=
3π‘β„Žπ‘£
β„Žπ‘£
𝑒 π‘˜π΅ 𝑇
𝐢𝑣 =
β‰ˆ1+
π‘₯2
2!
+ β‹―.
β„Žπ‘£
π‘˜π΅ 𝑇
= 3π‘π‘˜π΅ 𝑇
βˆ’1
πœ•πΈ
πœ•π‘‡ 𝑉
= 3𝑅 = 24.93 J/mol.K
Free electron contribution to specific heat
Related documents