Download Title - K.f.u.p.m. ISI

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
A Novel Nonparaxial Time-Domain Beam-Propagation Method
For Modeling
Ultrashort Pulses In Optical Structures
Masoudi, HM
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, JOURNAL OF
LIGHTWAVE TECHNOLOGY; pp: 3175-3184; Vol: 25
King Fahd University of Petroleum & Minerals
http://www.kfupm.edu.sa
Summary
In this paper, a new nonparaxial time-domain beam-propagation method (TD-BPM)
based on Pade approximant for modeling ultrashort optical pulses has been proposed
and verified. The high efficiency of the technique in modeling long device interaction
comes from solving the TD wave equation along one direction and allowing the time
window to follow the evolution of the pulse. The accuracy of the method was tested in
three different environments of homogenous and nondispersive medium, metallic, and
dielectric waveguides and then was applied to model ultrashort pulse propagation in a
directional-coupler device. The characterization of the technique shows excellent
performance in terms of accuracy, efficiency, and stability, which the conventional
paraxial TD-BPM failed to achieve. The new TD-BPM is particularly well suited for
the study of unidirectional propagation of compact ultrashort temporal pulses over
long distances in waveguide structures.
References:
1.
2.
3.
4.
5.
6.
7.
8.
9.
BAMBERGER A, 1988, SIAM J APPL MATH, V48, P129
BRAVOROGER LL, 2004, IEEE PHOTONIC TECH L, V16, P132, DOI
10.1109/LPT.2003.818949
CHAN RY, 1994, IEEE PHOTONIC TECH L, V6, P1001
CHU ST, 1989, J LIGHTWAVE TECHNOL, V7, P2033
CHUNG Y, 1991, IEEE J QUANTUM ELECT, V27, P2296
COLLINS MD, 1989, J ACOUST SOC AM, V86, P1097
ELREFAEI H, 2000, IEEE PHOTONIC TECH L, V12, P389
FEIT MD, 1978, APPL OPTICS, V17, P3990
©
Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
HAUNG WP, 1991, IEEE PHOTONIC TECH L, V3, P524
HO PL, 2001, IEEE PHOTONIC TECH L, V13, P1316
HOEKSTRA HJWM, 1997, OPT QUANT ELECTRON, V29, P157
HUANG RD, 1996, FINANCIAL MARKETS I, V5, P1
JAMID HA, 1993, ELECTRON LETT, V29, P83
JIN GH, 1997, IEEE PHOTONIC TECH L, V9, P348
JOSEPH RM, 1997, IEEE T ANTENN PROPAG, V45, P364
KOSHIBA M, 2000, J LIGHTWAVE TECHNOL, V18, P102
LEE DL, 1986, ELECTROMAGNETIC PRIN
LIU PL, 1995, IEEE PHOTONIC TECH L, V7, P890
MA F, 1997, J LIGHTWAVE TECHNOL, V15, P1974
MASOUDI HM, 1994, IEEE PHOTONIC TECH L, V6, P848
MASOUDI HM, 1995, IEEE J QUANTUM ELECT, V31, P2107
MASOUDI HM, 1995, IEEE PHOTONIC TECH L, V7, P400
MASOUDI HM, 1995, INT J NUMER MODEL EL, V8, P95
MASOUDI HM, 1999, IEEE PHOTONIC TECH L, V11, P1274
MASOUDI HM, 2001, J LIGHTWAVE TECHNOL, V19, P759
MASOUDI HM, 2007, IEEE PHOTONIC TECH L, V19, P786, DOI
10.1109/LPT.2007.895905
MASOUDI HM, 2007, IN PRESS MICROW OPT
MILINAZZO FA, 1997, J ACOUST SOC AM, V101, P760
RAMO S, 1984, FIELDS WAVES COMMUNI
RAO HL, 2000, J LIGHTWAVE TECHNOL, V18, P1155
RAPPAPORT CM, 1995, IEEE MICROW GUIDED W, V5, P90
SHIBAYAMA J, 2000, J LIGHTWAVE TECHNOL, V18, P437
SHIBAYAMA J, 2003, J LIGHTWAVE TECHNOL, V21, P1709, DOI
10.1109/JLT.2003.814392
SHIBAYAMA J, 2005, J LIGHTWAVE TECHNOL, V23, P2285, DOI
10.1109/JLT.2005.850032
TAFLOVE A, 1988, WAVE MOTION, V10, P547
YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302
YEVICK D, 1994, OPT QUANT ELECTRON, V26, P185
ZHENLE J, 1997, MICR OPT TECHNOL LET, V14, P249
ZIOLKOWSKI RW, 1992, J OPT SOC AM A, V9, P2021
ZIOLKOWSKI RW, 1993, J OPT SOC AM B, V10, P186
ZIOLKOWSKI RW, 1997, IEEE T ANTENN PROPAG, V45, P375
For pre-prints please write to: [email protected]
©
Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
Related documents