Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
A Novel Nonparaxial Time-Domain Beam-Propagation Method For Modeling Ultrashort Pulses In Optical Structures Masoudi, HM IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, JOURNAL OF LIGHTWAVE TECHNOLOGY; pp: 3175-3184; Vol: 25 King Fahd University of Petroleum & Minerals http://www.kfupm.edu.sa Summary In this paper, a new nonparaxial time-domain beam-propagation method (TD-BPM) based on Pade approximant for modeling ultrashort optical pulses has been proposed and verified. The high efficiency of the technique in modeling long device interaction comes from solving the TD wave equation along one direction and allowing the time window to follow the evolution of the pulse. The accuracy of the method was tested in three different environments of homogenous and nondispersive medium, metallic, and dielectric waveguides and then was applied to model ultrashort pulse propagation in a directional-coupler device. The characterization of the technique shows excellent performance in terms of accuracy, efficiency, and stability, which the conventional paraxial TD-BPM failed to achieve. The new TD-BPM is particularly well suited for the study of unidirectional propagation of compact ultrashort temporal pulses over long distances in waveguide structures. References: 1. 2. 3. 4. 5. 6. 7. 8. 9. BAMBERGER A, 1988, SIAM J APPL MATH, V48, P129 BRAVOROGER LL, 2004, IEEE PHOTONIC TECH L, V16, P132, DOI 10.1109/LPT.2003.818949 CHAN RY, 1994, IEEE PHOTONIC TECH L, V6, P1001 CHU ST, 1989, J LIGHTWAVE TECHNOL, V7, P2033 CHUNG Y, 1991, IEEE J QUANTUM ELECT, V27, P2296 COLLINS MD, 1989, J ACOUST SOC AM, V86, P1097 ELREFAEI H, 2000, IEEE PHOTONIC TECH L, V12, P389 FEIT MD, 1978, APPL OPTICS, V17, P3990 © Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. HAUNG WP, 1991, IEEE PHOTONIC TECH L, V3, P524 HO PL, 2001, IEEE PHOTONIC TECH L, V13, P1316 HOEKSTRA HJWM, 1997, OPT QUANT ELECTRON, V29, P157 HUANG RD, 1996, FINANCIAL MARKETS I, V5, P1 JAMID HA, 1993, ELECTRON LETT, V29, P83 JIN GH, 1997, IEEE PHOTONIC TECH L, V9, P348 JOSEPH RM, 1997, IEEE T ANTENN PROPAG, V45, P364 KOSHIBA M, 2000, J LIGHTWAVE TECHNOL, V18, P102 LEE DL, 1986, ELECTROMAGNETIC PRIN LIU PL, 1995, IEEE PHOTONIC TECH L, V7, P890 MA F, 1997, J LIGHTWAVE TECHNOL, V15, P1974 MASOUDI HM, 1994, IEEE PHOTONIC TECH L, V6, P848 MASOUDI HM, 1995, IEEE J QUANTUM ELECT, V31, P2107 MASOUDI HM, 1995, IEEE PHOTONIC TECH L, V7, P400 MASOUDI HM, 1995, INT J NUMER MODEL EL, V8, P95 MASOUDI HM, 1999, IEEE PHOTONIC TECH L, V11, P1274 MASOUDI HM, 2001, J LIGHTWAVE TECHNOL, V19, P759 MASOUDI HM, 2007, IEEE PHOTONIC TECH L, V19, P786, DOI 10.1109/LPT.2007.895905 MASOUDI HM, 2007, IN PRESS MICROW OPT MILINAZZO FA, 1997, J ACOUST SOC AM, V101, P760 RAMO S, 1984, FIELDS WAVES COMMUNI RAO HL, 2000, J LIGHTWAVE TECHNOL, V18, P1155 RAPPAPORT CM, 1995, IEEE MICROW GUIDED W, V5, P90 SHIBAYAMA J, 2000, J LIGHTWAVE TECHNOL, V18, P437 SHIBAYAMA J, 2003, J LIGHTWAVE TECHNOL, V21, P1709, DOI 10.1109/JLT.2003.814392 SHIBAYAMA J, 2005, J LIGHTWAVE TECHNOL, V23, P2285, DOI 10.1109/JLT.2005.850032 TAFLOVE A, 1988, WAVE MOTION, V10, P547 YEE KS, 1966, IEEE T ANTENN PROPAG, V14, P302 YEVICK D, 1994, OPT QUANT ELECTRON, V26, P185 ZHENLE J, 1997, MICR OPT TECHNOL LET, V14, P249 ZIOLKOWSKI RW, 1992, J OPT SOC AM A, V9, P2021 ZIOLKOWSKI RW, 1993, J OPT SOC AM B, V10, P186 ZIOLKOWSKI RW, 1997, IEEE T ANTENN PROPAG, V45, P375 For pre-prints please write to: [email protected] © Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa