Download Theorem The beta(b, b) distribution converges to the normal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Theorem The beta(b, b) distribution converges to the normal distribution when b → ∞.
Proof (by Professor Robin Ryder in the CEREMADE at Université Paris Dauphine) Let
the random variable X have the beta(b, b) distribution with probability density function
fX (x) =
Γ(2b)xb−1 (1 − x)b−1
Γ(b)Γ(b)
0 < x < 1,
where b is a real, positive parameter. The mean of X is E[X] = 1/2 and the variance of
X is V [X] = 1/4(2b + 1). Substract the mean and divide by the
√ standard deviation before
taking the limit. So consider the transformation Y = g(X) = 2 2b√+ 1(X − 1/2),√which is
a one-to-one transformation from√A = {x|0 < x < 1} to B = {y| − 2b + 1 < y < 2b + 1}
with inverse X = g −1 (Y ) = X/2 2b + 1 + 1/2 and Jacobian
1
dX
= √
.
dY
2 2b + 1
Then the probability density function of Y is
1
1
y
√
fY (y) = √
fX
+
2 2b + 1
2 2b + 1 2
b−1 b−1
y
y
1
1
Γ(2b) 1
+ √
− √
= √
·
2 2 2b + 1
2 2b + 1 Γ(b)2 2 2 2b + 1
b−1
√
√
y2
Γ(2b) 1
1
−
−
·
= √
2b
+
1
<
y
<
2b + 1.
2 2b + 1 Γ(b)2 4 4(2b + 1)
p
We now apply Stirling’s formula Γ(z) = 2π/z(z/e)z (1 + O(1/z)) and get
q
b−1
2π 2b 2b 1
y2
1
1
2b
e
fY (y) = √
1+O
−
·
2π b 2b
b
4 4(2b + 1)
2 2b + 1
b
e
b−1
2b
b
1
1
y2
2
1+O
= √ √
−
· √
b
4 4(2b + 1)
2b 2b + 1 2 2π
b−1
1
y2
1
1 b−1
1+O
−
= √ 4
b
4 4(2b + 1)
2π
b−1 1
1
y2
1+O
= √
1−
2b + 1
b
2π
2
√
√
1
y
1
= √ exp −
1+O
− 2b + 1 < y < 2b + 1.
2
b
2π
Thus, in the limit b → ∞, fY (y) converges pointwise to the probability density function of a
standard normal random variable. By Scheffé’s theorem, Y converges in distribution to the
standard normal distribution.
1
Related documents