Download 2.3 Notes Implicit Differentiation and Logarithmic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
2.3 Implicit Differentiation and Logarithmic Differentiation
☼ Two ways to find y’ in the equation xy=1, explicitly and IMPLICITLY.
First we will use explicit differentiation.
xy  1
1
y
x
y  x 1
y '  1x 2
y' 
1
x2
Now we will solve the problem using IMPLICIT differentiation.
xy  1
x  y ' y 1  0
xy '   y
y' 
y
x
(*This answer looks a little different than when we did the problem explicitly, but the two answers are equivalent:
1
 
y
1
x
y'        2
x
x
x
y
1
x
(1,1)
(2, ½)
1
1
m 2 
2
4

(-1/2, -2)
Examples:
A)
5 y 2  sin y  x 2 (First we will take the derivative with respect to X!!)
5  2 y  y ' cos y  y '  2 x (Algebraically solve for y’.)
y ' 10 y  cos y   2 x
y' 
2x
10 y  cos y
B)
d2y
2
2
Find
if 4 x  2 y  9
2
dx
8x  4 y  y '  0
4 y  y '  8 x
2x
y' 
y
 y 1  x  y ' 
y ''  2 

y2


2x 

 y  x y 

y ''  2 
y2






2
x
2y  4
y  y
y '' 
 
2
y
 y
2 y 2  4 x2
y '' 
y3
y '' 
9
y3
Proof of
d n
x  n  x n 1 for “rational” exponents:
dx
Let
y  x r where r is any rational #. r 
m
where m and n are integers.
n
y  xr
m
y  xn
n
 m
 y   x n 
 
n
m
y x
d
d m
 y n  
x 
dx
dx  
n  y n1  y '  m  x m1
n
m
n
y  x then y
Note: Since
So…
n x
m
y' 
m
n
 y '  mx m1
mx m1
m
m
nx n
m

m m1 m n 
y'  x
n
m m 1 m  mn
y'  x
n
m m 1
y'  xn
n
 r  x r 1
n 1
 m
xn 
 
n 1
x
m n 1
n
x
mn  m
n
mn m

n
xn
x
m
m
n
Recall:
d
1
ln x  
dx
x
d
1
ln x  
dx
x
d
1
ln u    u ' (chain rule when u is some function of x)
dx
u
d
1
logb x 
dx
 ln b  x
Example:
y
x 2 3 7 x  14
1  x 
2 4
 23

x 7 x  14 
(Recall y  x
ln  y   ln 
 1  x 2 4 


logb y  logb x )
*You can only feed logs positive #s. If


ln y  ln x 2 3 7 x  14  ln 1  x 2 
a  b then a  b .
4
ln y  ln x 2  ln  7 x  14  3  ln 1  x 2 
1
4
1
ln y  2 ln x  ln  7 x  14   4 ln 1  x 2  (Try to make u as close to just x as possible.)
3
*Calculus step:
1
1 1
1
1
 y '  2  
7  4
 2x
y
x 3  7 x  14 
1  x2 
2
7
8x 

y'  y 

2
 x 3  7  x  2  1  x  
*Substitute what y was originally to finish solving for y’.
2
1 x 1  x 2 
x 2  7 x  14  3  2  3  x  2  1  x 
8 x  3x  x  2  


y'


4
1  x2   3x  x  2  1  x 2  3x  x  2  1  x 2  3x  x  2  1  x 2  
1
1
x 2  7 x  14  3  6 x3  12 x 2  6 x  12  x  x 3  24 x 3  48 x 2 


y' 
4
3x  x  2  1  x 2 

1  x2  
1
x 2  3 7  x  2  3  17 x3  36 x 2  7 x  12 

 *derivative is undefined when x=0.
y' 
2
2 4
3
x
x

2
1

x






1

x
  
3
y' 
7 x  17 x3  36 x 2  7 x  12 
3  x  2  1  x
2
3

2 5
x0
Proof: Power rule for all real numbers.
Let r be any real number.
y  xr
y  xr
ln y  ln x r
ln y  ln x
r
ln y  r  ln x
d
d
ln y  r  ln x
dx
dx
1
1
 y'  r
y
x
y
y' r
x
xr
y'  r
x
y '  r  x r 1
Examples:
Find the points at which the graph of
2
4 x 2  y 2  8x  4 y  4  0 has vertical and horizontal tangent lines.
8 x  2 yy ' 8  4 y ' 0  0
2 yy ' 4 y '  8  8 x
yy ' 2 y '  4  4 x
 y  2 y '  4  4 x
y' 
4  4x
y2
Vertical tangent line: y= -2
Horizontal tangent line: x= 1
4 x  8x  0
4  y2  8  4 y  4  0
x2  2x  0
y2  4 y  0
x  x  2  0
x0 x2
 0, 2  2, 2
y  y  4  0
y  0 y  4
1,0 1, 4
2
4 x2  y 2  8x  4 y  4  0
Related documents