Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2.3 Implicit Differentiation and Logarithmic Differentiation ☼ Two ways to find y’ in the equation xy=1, explicitly and IMPLICITLY. First we will use explicit differentiation. xy 1 1 y x y x 1 y ' 1x 2 y' 1 x2 Now we will solve the problem using IMPLICIT differentiation. xy 1 x y ' y 1 0 xy ' y y' y x (*This answer looks a little different than when we did the problem explicitly, but the two answers are equivalent: 1 y 1 x y' 2 x x x y 1 x (1,1) (2, ½) 1 1 m 2 2 4 (-1/2, -2) Examples: A) 5 y 2 sin y x 2 (First we will take the derivative with respect to X!!) 5 2 y y ' cos y y ' 2 x (Algebraically solve for y’.) y ' 10 y cos y 2 x y' 2x 10 y cos y B) d2y 2 2 Find if 4 x 2 y 9 2 dx 8x 4 y y ' 0 4 y y ' 8 x 2x y' y y 1 x y ' y '' 2 y2 2x y x y y '' 2 y2 2 x 2y 4 y y y '' 2 y y 2 y 2 4 x2 y '' y3 y '' 9 y3 Proof of d n x n x n 1 for “rational” exponents: dx Let y x r where r is any rational #. r m where m and n are integers. n y xr m y xn n m y x n n m y x d d m y n x dx dx n y n1 y ' m x m1 n m n y x then y Note: Since So… n x m y' m n y ' mx m1 mx m1 m m nx n m m m1 m n y' x n m m 1 m mn y' x n m m 1 y' xn n r x r 1 n 1 m xn n 1 x m n 1 n x mn m n mn m n xn x m m n Recall: d 1 ln x dx x d 1 ln x dx x d 1 ln u u ' (chain rule when u is some function of x) dx u d 1 logb x dx ln b x Example: y x 2 3 7 x 14 1 x 2 4 23 x 7 x 14 (Recall y x ln y ln 1 x 2 4 logb y logb x ) *You can only feed logs positive #s. If ln y ln x 2 3 7 x 14 ln 1 x 2 a b then a b . 4 ln y ln x 2 ln 7 x 14 3 ln 1 x 2 1 4 1 ln y 2 ln x ln 7 x 14 4 ln 1 x 2 (Try to make u as close to just x as possible.) 3 *Calculus step: 1 1 1 1 1 y ' 2 7 4 2x y x 3 7 x 14 1 x2 2 7 8x y' y 2 x 3 7 x 2 1 x *Substitute what y was originally to finish solving for y’. 2 1 x 1 x 2 x 2 7 x 14 3 2 3 x 2 1 x 8 x 3x x 2 y' 4 1 x2 3x x 2 1 x 2 3x x 2 1 x 2 3x x 2 1 x 2 1 1 x 2 7 x 14 3 6 x3 12 x 2 6 x 12 x x 3 24 x 3 48 x 2 y' 4 3x x 2 1 x 2 1 x2 1 x 2 3 7 x 2 3 17 x3 36 x 2 7 x 12 *derivative is undefined when x=0. y' 2 2 4 3 x x 2 1 x 1 x 3 y' 7 x 17 x3 36 x 2 7 x 12 3 x 2 1 x 2 3 2 5 x0 Proof: Power rule for all real numbers. Let r be any real number. y xr y xr ln y ln x r ln y ln x r ln y r ln x d d ln y r ln x dx dx 1 1 y' r y x y y' r x xr y' r x y ' r x r 1 Examples: Find the points at which the graph of 2 4 x 2 y 2 8x 4 y 4 0 has vertical and horizontal tangent lines. 8 x 2 yy ' 8 4 y ' 0 0 2 yy ' 4 y ' 8 8 x yy ' 2 y ' 4 4 x y 2 y ' 4 4 x y' 4 4x y2 Vertical tangent line: y= -2 Horizontal tangent line: x= 1 4 x 8x 0 4 y2 8 4 y 4 0 x2 2x 0 y2 4 y 0 x x 2 0 x0 x2 0, 2 2, 2 y y 4 0 y 0 y 4 1,0 1, 4 2 4 x2 y 2 8x 4 y 4 0