Download Matrix Multiplication PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MATRICES
MATRIX Multiplication
Warm-up
Subtract (don’t forget to KCC):
é 0 3 ù é -3 5 ù é
ê
ú ê
ú ê
ê 5 -5 ú - ê 0 7 ú =ê
ê 4 -1 ú ê -6 -2 ú êë
ë
û ë
û
ù
3 -2
ú
5 -12 ú
10 1 ú
û
Matrix Multiplication


Matrix Multiplication is NOT
Commutative! Order matters!
You can multiply matrices only if the
number of columns in the first matrix
equals the number of rows in the second
matrix.
2 columns
3ù
é2
ê -5 6 ú · é 1
ê
ú ê3
êë 9 -7 úû ë
-2 0 ù
4 -5 úû
2 rows
Matrix Multiplication

Take the numbers in the first row of
matrix #1. Multiply each number by its
corresponding number in the first
column of matrix #2. Total these
products.
3ù
é2
ê -5 6 ú · é 1
ê
ú ê3
êë 9 -7 úû ë
-2 0 ù
4 -5 úû
2i1+ 3i3 = 11
The result, 11, goes in
row 1, column 1 of the
answer. Repeat with
row 1, column 2; row 1
column 3; row 2,
column 1; ...
Matrix Multiplication

Notice the dimensions of the matrices and
their product.
3ù
é2
ê -5 6 ú · é 1
ê
ú êë 3
êë 9 -7 úû
3x2
__
8 -15 ù
é 11
-2 0 ù ê
ú
=
13
34
-30
ú
4 -5 úû ê
êë -12 -46 35 úû
2 x__
3
3 x__
3
__
Matrix Multiplication

Another example:
2 1
 9 0    5  

  2 
10 5  
3x2
2x1
 8 
 45


 60 
3x1
Matrix Determinants
 A Determinant is a real number associated
with a matrix. Only SQUARE matrices
have a determinant.
 The symbol for a determinant can be the
phrase “det” in front of a matrix variable,
det(A); or vertical bars around
a matrix, |A| or 3 -1 .
2
4
Matrix Determinants
To find the determinant of a 2 x 2 matrix,
multiply diagonal #1 and subtract the product
of diagonal #2.
Diagonal 2 = -2
3 1

2 4
Diagonal 1 = 12
12  (2)  14
Matrix Determinants
To find the determinant of a 3 x 3 matrix, first
recopy the first two columns. Then do 6
diagonal products.
18
60 16
5
2
6 5
2
2
-1 4 2
-1
-3
3
4 -3
3
-20 -24
36
Matrix Determinants
The determinant of the matrix is the sum of
the downwards products minus the sum of the
upwards products.
18
60
6 5
16
5
2
2
2
-1 4 2
-1
-3
3
4 -3
3
-20 -24
= (-8) - (94) = -102
36
Identity Matrices

An identity matrix is a square matrix that
has 1’s along the main diagonal and 0’s
everywhere else.
é1 0 0 ù
ê0 1 0 ú
ê
ú
êë 0 0 1 úû

é1 0 ù
ê0 1 ú
ë
û
When you multiply a matrix by the
identity matrix, you get the original
matrix.
Inverse Matrices
 When you multiply a matrix and its
inverse, you get the identity matrix.
é 3 -1ù é 2 1 ù é 1 0 ù
ê -5 2 úiê 5 3ú = ê 0 1 ú
ë
ûë
û ë
û
Inverse Matrices
 Not all matrices have an inverse!
 To find the inverse of a 2 x 2 matrix,
first find the determinant.
a) If the determinant = 0, the inverse does
not exist!
 The inverse of a 2 x 2 matrix is the
reciprocal of the determinant times the
matrix with the main diagonal swapped
and the other terms multiplied by -1.
Inverse Matrices
3 -1ù
é
Example 1: A = ê
ú
-5
2
ë
û
det(A) = 6 - (5) = 1
1 é2 1ù é2 1ù
A = ê
=ê
ú
1 ë 5 3û ë 5 3úû
-1
Inverse Matrices
Example 2:
é -2 -2 ù
B=ê
ú
5
4
ë
û
det(B) = (-8) - (-10) = 2
1é 4 2 ù é 2
B = ê
=ê 5
ú
2 ë -5 -2 û ë - 2
-1
1ù
-1úû
Related documents