Download EE 529 Circuit and Systems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EE 529 Circuit and
Systems Analysis
Lecture 5
EASTERN MEDITERRANEAN UNIVERSITY
Mathematical Model of a Dependent
Source
A. Voltage Controlled Voltage Source
a
i1
i2
A
C
+
V1
c
+
V1
_
1
V2
2
_
D
B
b
 i1   0 0 v1 
v     0  i 
 2
 2 
d
Mathematical Model of a Dependent
Source
B. Current Controlled Voltage Source
a
i1
i2
A
C
+
V1
c
+
ri1
_
1
V2
2
_
D
B
b
 v1  0 0  i1 
 v    r 0  i 
 2
 2 
d
Mathematical Model of a Dependent
Source
A. Voltage Controlled Current Source
a
i1
i2
A
C
+
V1
c
+
gV1
_
1
V2
2
_
D
B
b
 i1   0 0  v1 
i    g 0 v 
 2
 2 
d
Mathematical Model of a Dependent
Source
A. Current Controlled Current Source
a
i1
c
i2
A
C
+
+
V1
i1
_
1
V2
2
_
D
B
b
v1   0
i   
 2 
0  i1 
0 v2 
d
Circuit Analysis
A-Branch Voltages Method:
Consider the following circuit. Find v and i
5i A
+ v -

1/2 
5A
1
1
i
4v V
Circuit Analysis
•Draw the circuit graph
5i A
a
+ v -
b

c
1/2 
5A
1
4v V
1
i
d
5
a
b
b
4
v7  4v4
i5  5i2
6
3
1
7
2
d
Circuit Analysis
Select a proper tree: (n-1=4 branches)
 Place voltage sources in tree
 Place the voltages controlling the dependent sources in tree
 Place current sources in co-tree
 Complete the tree from the resistors
5
a
b
6
b
4
3
1
7
2
d
Circuit Analysis
•
Write the fundamental cut-set equations for the tree branches which do
not correspond to voltage sources.
i3  i1  i2  i6
5
a
b
6
b
4
3
1
7
2
d
i4  i5  i6
Circuit Analysis
•Write the currents in terms of voltages using terminal equations.
i1  5 A
5i A
a
+ v -
b

c
1/2 
5A
1
4v V
1
i
d
5
a
b
6
b
4
1
2
3
7
d
v2
i2   v2
1
v3
i3   v3
1
i5  5i2  5v2
i4  2v4
v6
i6 
2
Circuit Analysis
•
Substitute the currents into fundamental cut-set equation.
i3  i1  i2  i6
v6
v3  5  v2 
2
i4  i5  i6
v6
2v4  5v2 
2
• v2, and v6 must be expressed in terms of branch voltages using
fundamental circuit equations.
Circuit Analysis
5
b
a
6
b
v2  v3
4
3
7
2
1
d
v6  v4  v3  v7  v3  5v4
Circuit Analysis
•
Therefore
v6
2
1
v3  5  v3   v3  5v4 
2
2.5v3  2.5v4  5
v3  5  v2 
or
5v3  5v4  10.............(1)
and
1
 v3  5v4 
2
4.5v3  4.5v4  0
2v4  5v3 
v4  v3 ...............(2)
Circuit Analysis
•
Subst. Eq. (2) into (1) yields
5v3  5(v3 )  10
v3  1 V
v4  1 V

v  v4  1 V
i  i2  v2  v3  1 A
Chord Currents Method
 Consider the circuit. Find v using chord
currents method.
9V
6 k
12 k
+ v
18 mA
4 k
-
4 k
6 mA
Chord Currents Method
 Draw the circuit graph.
6 k
a
9V
a
5
4
b
12 k
+ v
18 mA
c
-
c
6
2
4 k
4 k
3
b
6 mA
7
1
d
d
 v = v3
Chord Currents Method
 Select a proper tree
6 k
a
9V
a
5
4
b
12 k
+ v
18 mA
c
-
c
6
2
4 k
4 k
3
b
6 mA
7
1
d
d
Chord Currents Method
 Write the fundamental circuit equations for
the chords which are not current sources.
a
5
4
v2  v3  v6
3
b
c
6
2
7
1
d
v4  v3  v5
Chord Currents Method
 Write all resistor voltages in terms of terminal
currents using terminal equations.
a
5
4
v3  12ki3
3
b
c
v4  6ki4
6
2
7
1
d
v5  9 V
v2  4ki2
v6  4ki6
Chord Currents Method
 Substitute the terminal equations to
fundamental circuit equations
a
v2  v3  v6
5
4
4ki2  12ki3  4ki6
3
b
c
6
2
7
1
d
or
i2  3i3  i6
and
v4  v3  v5
6ki4  12ki3  9
or
2i4  4i3  3m
Chord Currents Method
 Write fundamental cut-set equations for i3 and
i6.
a
i3  i1  i2  i4  18m  i2  i4
5
4
3
b
c
6
2
7
1
d
i6  i1  i2  i7  18m  i2  6m  i2  24m
Chord Currents Method
 Substitute the fundamental cut-set equations
to fundamental circuit equations
a
i2  3i3  i6
5
4
3
b
c
i2  3 18m  i2  i4   i2  24m
5i2  3i4  78m...........(1)
6
2
7
1
d
and
2i4  4i3  3m
2i4  4 18m  i2  i4   3m
4i2  6i4  69m.............(2)
Chord Currents Method
 Substitute the fundamental cut-set equations
to fundamental circuit equations
a
i2  3i3  i6
5
4
3
b
c
i2  3 18m  i2  i4   i2  24m
5i2  3i4  78m...........(1)
6
2
7
1
d
and
2i4  4i3  3m
2i4  4 18m  i2  i4   3m
4i2  6i4  69m.............(2)
Chord Currents Method
 Using Eqns.(1) and (2), i2 and i4 can be
calculated as
i2  14.5mA
i4 
11
mA
6
11 

 v  v3  12ki3  12k 18m  14.5m  m   20 V
6 

Chord Currents Method
 Consider the following circuit. Find v0.
a
10 V
i1
0.4v1 A
5
b
20 
c
+
+
v0
v1
_
d
2i1 V
10 
_
e
5A
Related documents