Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Summary of Lecture 18
导波条件
( pd ) 2 (hd ) 2 (n22 n12 )k02 d 2
边界条件
pd hd tan( hd )
图解法求波导模式
波导中模式耦合的微扰理论
E y (r, t )
1
Am ( z ) y( m ) ( x)ei (t m z ) c.c.
2 m
dAs( ) i (t m z ) dAs( ) i (t m z )
e
e
c.c.
dz
dz
i 2
(s)
P
(
r
,
t
)
y ( x ) dx
2 pert
2 t
周期波导
dA
ab Be i 2( ) z
dz
dB
ba Aei 2( ) z
dz
Coupling constant
Phase difference
§11.5 Coupled-Mode Solutions
Coupled-mode equations
As( ) A
As( ) B
dA
ab Be i 2( ) z
dz
dB
*
ab
Aei 2 ( ) z
dz
Reflective wave
Incident wave
Initial conditions:
B( z 0) B(0)
A( z L) 0
§11.5 Coupled-Mode Solutions
Solution
A( z )eiz
B ( z )e
where
iz
i abei0 z
B(0)
sinh[ S ( z L)]
sinh SL iS cosh SL
e i 0 z
B(0)
sinh SL iS cosh SL
{ sinh[ S ( z L)] iS cosh[ S ( z L)]}
S 2 ( ) 2
| ab |
§11.5 Coupled-Mode Solutions
Under the matching condition
0
ab sinh[ ( z L)]
A( z ) B(0)
cosh L
cosh[ ( z L)]
B( z ) B(0)
cosh L
§11.5 Coupled-Mode Solutions
z-dependent parts are exponentials with propagation constants
l
' 0 iS i 2 [ ( ) 0 ]2
for
0
0 l /
( )
'
has an imaginary part
“forbidden” region
Analogous to the energy gap in semiconductors where the periodic crystal
potential causes the electron propagation constants to become complex.
For each l, there has a gap with center frequency
( ) ( / c)neff
(0l ) l /
neff
l
2
'
i
c
( 0 ) 2
2
1/ 2
§11.5 Coupled-Mode Solutions
“forbidden” gap zone
( ) gap
2c
neff
and
(Im ' ) max
Numerical Example
n 2 ( x) 2n0 n
al(l 1 ) 2 /π
β ω με0 n0 /
i 0 al 2
(s)
2
n
(
x
)[
(
x
)]
dx
y
4
i 0 al
2n
2 2
n
i
4
§11.6 Periodic Fibers
How to make a periodic index fiber
n( x, y, z ) n0 sin(
2
z)
2 sin
§11.6 Periodic Fibers
Optical reflectors and filters
At frequencies near the Bragg frequency, incident mode is strongly reflected; while at
frequencies not near Bragg frequency are transmitted with no loss.
i sinh( 2 ( ) 2 L)
A(0)
r ( )
B(0) sinh( 2 ( ) 2 L) i 2 ( ) 2 cosh( 2 ( ) 2 L)
( ) ( ) 0
n
0 l
Filter bandwidth
filter
2c
neff
0
c
neff
§11.6 Periodic Fibers
Distributed Feedback Lasers
dA
ab Be i 2( ) z A
dz
dB
*
ab
Aei 2( ) z B
dz
A( z ) A' ( z ) exp( z )
B( z ) B' ( z ) exp( z )
Ei ( z ) B' ( z )e[( i ) z ]
[( i ) z ]
Er ( z ) A' ( z )e
dA'
ab B' e i 2( i ) z
dz
dB'
*
ab
A' ei 2( i ) z
dz
e i0 z {( i ) sinh[ S ( L z )] S cosh[ S ( L z )]}
B(0)
( i ) sinh( SL) S cosh( SL)
abei z sinh[ S ( L z )]
B(0)
( i ) sinh( SL) S cosh( SL)
0
§11.6 Periodic Fibers
S 2 | |2 ( i ) 2
Consider the condition
( i ) sinh SL S cosh SL
E r ( 0)
Ei ( 0)
and
Ei ( L )
Ei ( 0 )
infinite
Oscillator condition for DFB
High-gain constant
ab sinh SL
Er (0)
Ei (0) ( i ) sinh( SL) S cosh( SL)
Ei ( L)
Sei 0 L
Ei (0) ( i ) sinh( SL) S cosh( SL)
§11.6 Periodic Fibers
Incident and reflected fileds inside an amplifying periodic waveguide
§11.7 EO Modulation and Mode Coupling
Optical modulation and switching
(1) Smaller modulation powers (see Eq. 9.5-1)
(2) Longer modulation paths (absence of diffraction)
TM TE mode conversion
[ ppert (t )] y rE E
( 0)
( )
x
( x)e
i (t TM z )
E ( 0) dc field
E x( ) TM mode
Excite a TE mode
Coupled mode equations
dAm
i ( mTM mTE ) z
iBm e
dz
dBm
i ( mTM mTE ) z
iAm e
dz
d
(| Am |2 | Bm |2 ) 0
dz
Initial conditions:
Bm (0) B0
Am (0) 0
§11.7 EO Modulation and Mode Coupling
Under the matching condition
TM
m
when
Bm ( z ) B0 cos(z )
TE
m
Am ( z ) iB0 sin( z )
i
Bm ( z ) B0 e [cos( sz ) sin( sz )
s
iz
mTM mTE
where
Am ( z ) iB0 e
s2 2 2
iz
s
sin( sz )
2 mTM mTE B A
2
Fraction of power exchanged 2
2
§11.7 EO Modulation and Mode Coupling
Power exchange between two coupled modes
mTM mTE
mTM mTE
§11.7 EO Modulation and Mode Coupling
EO modulation in a dielectric waveguide
§11.8 Directional Coupling
Exchange of power between guided modes of adjacent waveguides is
known as directional coupling.
Applications:
Power division, modulation, switching, frequency selection, and
polarization selection
Coupled field
E y A( z ) y( a ) ( x)ei[t ( a M a ) z ] B( z ) y(b) ( x)ei[t ( b M b ) z ]
§11.8 Directional Coupling
Perturbation polarization
Ppert eit 0{ y( a ) A( z)[nc2 ( x) na2 ( x)]ei a z y(b) B( z )[nc2 ( x) nb2 ( x)]eib z }
Coupled mode equations
dA
i ab Be i 2z
dz
dB
i ba Aei 2z
dz
2 ( b M b ) ( a M a )
Initial conditions:
B(0) B0
A(0) 0
solutions
2
2
2
2 1/ 2
Pa ( z ) P0 2
sin
[(
) z]
2
Pb ( z ) P0 Pa ( z )
Complete power transfer
0
L / 2
§11.8 Directional Coupling
For
0
2
Fraction of power exchanged 2
2
Identical waveguides
2h 2 pe ps
( w 2 / p)( h 2 p 2 )
Channel waveguides
2h 2 pe ps
w(h 2 p 2 )
§11.8 Directional Coupling
EO Switch
0
The directional coupler is designed as:
So that
L / 2
Pa (0) 0
Pa ( L) P0
Pb (0) P0
Pb ( L) 0
Now we apply electric field to control the phase such that:
L
2
So that
2
3 2
L L
4
2
2
2
2
2
L
Pa (0) 0
Pa ( L) 0
Pb (0) P0
Pb ( L) P0
3
2
§11.8 Directional Coupling
Multiplexing and Demultiplexing
§11.8 Directional Coupling
Multiguide directional coupler
dAn
iAn 1 iAn 1
dz
An (0) 1
n0
An (0) 0
n0
An ( z ) (i) n J n (2z )