Download Simulation results

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Ground loop (electricity) wikipedia , lookup

Dynamic range compression wikipedia , lookup

Current source wikipedia , lookup

Buck converter wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Dither wikipedia , lookup

Nominal impedance wikipedia , lookup

Alternating current wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Zobel network wikipedia , lookup

Metadyne wikipedia , lookup

Rectiverter wikipedia , lookup

Opto-isolator wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Transcript
Tilecal VFE developments at
Clermont-Ferrand
June 2010 Status
G Bohner, J Lecoq, X Soumpholphakdy
F Vazeille, D Pallin
25 juin 2010
DPallin sLHC_Tile meeting
1
One VFE ASIC for Tilecal
• VFE ASIC design :
• see February TILE week J Lecoq talk
http://indico.cern.ch/conferenceDisplay.py?confId=84640
• Specifications
• Large dynamic range, 16 to 17 bits
• Tilecal signal : 5 ns rise time , 40 ns fall time.
• Least significant charge: 25 fC
• Most significant charge: 0.8 nC (1 to 1.2 nC ?)
• The noise (and LSB) is half part of the smallest signal (12,5 fC)
• The corresponding maximum currents are:
• Minimum (1 LSB) of 625 nA
• Maximum (full scale) 40 (60 mA ?)
• => multi gain: 3 in this study ( 1, 8, 64)
25 juin 2010
DPallin sLHC_Tile meeting
2
General design
Shaper
PMT
Current
conveyor
Shaper
ADC
Shaper
 The base line is a current conveyor with 2 or 3 gains, shaper RC and ADC
 To stay in a current mode (don't convert in voltage).
 To provide multigains => To duplicate currents.
 Next stages in Voltage mode.
 A version with a passive shaper before the conveyor like in tile VFE has been simulated also.
 Then the only difference is the way to split the signal to get a multigain.
 Now
R&D only for conveyor in IBM 130 nm.
25 juin 2010
DPallin sLHC_Tile meeting
3
conveyor layout
Run IBM 130nm via CERN sent in foundry may 2010
• Some extra delay at CERN
• => Tests of the produced conveyor in September 2010
1mm x 135µm
25 juin 2010
DPallin sLHC_Tile meeting
4
Simulation results

With a very simple shaping on each gain ( at 40ns peaking time)
 Results on linearity shown during last meeting
 G64 50V/1V=5 10-5 ; G8 500V/1V=5 10-4 ; G1 20mV/1V=2 10-2
Unipolar Shaping
Peaking time 40 ns.
Signal after shaping
Linearity
 Now studies on the impact of the VFE resolution
to the overall detector jet resolution
25 juin 2010
DPallin sLHC_Tile meeting
5
Simulation results
 Studies on the impact of the VFE resolution on jet resolution
 Noise on VFE
 TILE VFE+ADC noise+OF
G64
G1
 Noise on ADC VFE LPC (10bit ADCs)
 Overestimated assumption : ½ LSB
 Next time : ADC noise simulation using observed noise on comparators
25 juin 2010
DPallin sLHC_Tile meeting
6
Simulation results
 Studies on the impact of the VFE resolution on jet resolution
 Conversion charge to Energy
 From
- for jets use 0.9 pC/GeV.
- for muons 1.15pC/GeV
VFE Clermont
3 gains (64 8 1)
10 bit ADCs
25 juin 2010
DPallin sLHC_Tile meeting
7
Simulation results
VFE Clermont
3 gains (64 8 1)
10 bit ADCs
25 juin 2010
DPallin sLHC_Tile meeting
8
Simulation results
VFE Clermont
2 gains (64 1)
10 bit ADCs
25 juin 2010
DPallin sLHC_Tile meeting
9
Simulation results
• 8 bits ADC not adequate to resolve muons with required S/N
• 10 bits ADC / 2 gains (64,1) within specifications
• Lower impact than tile electronics on jet resolution ( with crude
assumption on ADC noise and no OF)
• 10 bits ADC / 3 gains (64,8,1) much better as expected
• Very good linearity
• No problem to provide 3 gains in conveyor configuration
• Even better if gain choice is (64, 4,1)
25 juin 2010
DPallin sLHC_Tile meeting
10
Conclusions
 Noise and linearity performances reach all the specifications.
 VFE Tests in september.
 Amplifier R&D : study going on.
 Simulation of sampling + OF and « real ADC » noise going on
 What is the best peaking time to choose ?
 Simulation showed that a better S/N is obtained with a peaking time
of 25ns.
 10 bits ADC / 3 gains (64,4,1) is the best compromise from fast simu.
 Is Tile community in favour of a 3 gains configuration ?
 If not: why ?
25 juin 2010
DPallin sLHC_Tile meeting
11
BACKUP SLIDES
25 juin 2010
DPallin sLHC_Tile meeting
12
Why a current conveyor?
Z
The signal delivered by the PMT is a current.
Its conversion to a voltage is easy:
With a simple impedance
(resistor and/or passive shaper) U=Zi
The multi gain is easy to achieve.
BUT: The output impedance is Z !
=> Open door for the noise, the crosstalk and the bandwidth !
Z
Av
25février
8
juin 2010
2010
With an amplifier, U=Zi again
BUT: the impedance seen from the PMT
is divided by the amplifier gain (now Z/Av).
Reduction of the noise and crosstalk.
The bandwidth is only given by the amplifier.
A multi gain is impossible on this stage.
The dynamic range is poor.
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
13
Results with a very simple shaping
on each gain
Adding a simple shaping
Current
at 40 ns peaking time:
from
(Only RC here, could
Be adapted to CR-RC)
the current conveyor
25 juin 2010
DPallin sLHC_Tile meeting
14
The current conveyor solution
The idea: Stay in current mode (don't convert in voltage).
we need an input impedance as low as possible,
an output impedance as high as possible,
the possibility to handle a multi gain at the first stage.
To do this copying current is sufficient:
A common gate architecture is simple and efficient …
25février
8
juin 2010
2010
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
15
With a current conveyor:
The advantages are:
The multi gain is free, less gains are
simply given by par the transistor
scales . (W/L).
Le current increase like the signal :
The quiescent current could be low.
With submicron MOS gm too small:
The output impedance 1/gm is not
small enough.
25février
8
juin 2010
2010
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
16
The « super » current conveyor
The input is a “super common gate”.
Vi is fixed by a feedback loop.
The input impedance become 1/(gm0*gm3*R6)
More:
This architecture is self polarized.
The current is twice copied.
The quiescent current is small (only 1 mA for
a signal current up to 50 mA or more.)
 The input impedance is now very low.
 It is easy to obtain a differential structure.
25février
8
juin 2010
2010
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
17
Simplified (2 gains) diagram in IBM 130nm
Differential structure.
Multi gain by current copy
3 gains, ratio 1, 8, 64
PM
0-625 µA (high gain)
625µA-5mA (medium)
5-40mA (small gain)
This correspond in fact to:
1,75k Ω, 217 Ω et 25 Ω.
25février
8
juin 2010
2010
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
18
Convoyer : schematic
OUT1
PMT
 differential stucture
 gains with current mirrors
 3 gains (1, 8, 64) :
 0 to 625µA (800 µA)
 625µA to 5mA (6.4mA)
 5mA to 40mA (5.1mA)
OUT8
25 juin 2010
DPallin sLHC_Tile meeting
19
Simulation results
linearity
Input impedance versus magnitude
VFE pour Tilecale
1Ω
40mA
40mA
Input impedance versus frequency
2.34 Ω
25 juin 2010
1kHz
DPallin sLHC_Tile meeting
10MHz
20
The noise (worse case, after shaping)
Noise on the highest gain: 500µV, 0.5 LSB
25février
8
juin 2010
2010
Jacques
DPallin
Lecoq,
sLHC_Tile
réunion
meeting
atlas LPC
21
Simulation results after shaper
Shaper : 5kΩ 20pF (40ns)
linearity
Gain 8 : ± 500µV
Gain 64 : ± 50µV
Gain 1 : ± 20mV
1V
1V
1V
out noise
0.22 10-6
25 juin 2010
DPallin sLHC_Tile meeting
Gain : 64
σ = 500µV
1/2 LSB
22
One amplificator prototype
Design : only one stage, folded cascoded
25 juin 2010
DPallin sLHC_Tile meeting
23
Amplificator simulation
INL shaper 1V différentiel
INL shaper pour 2V différentiel
3.00E-04
0.008
2.00E-04
0.006
0.004
1.00E-04
0.00E+00
INL
-6.00E-01 -4.00E-01 -2.00E-01 0.00E+00 2.00E-01 4.00E-01 6.00E-01
-1.00E-04
0.002
INL
-1.5
0
-1
-2.00E-04
25 juin 2010
-0.5
-0.002
0
0.5
1
1.5
-0.004
-3.00E-04
-0.006
-4.00E-04
Sortie en Volts
-0.008
Sortie en Volts
DPallin sLHC_Tile meeting
24
Amplificator layout
Run IBM 130nm via CERN
sent in foundery mai 2010
370µm x 670µm
25 juin 2010
DPallin sLHC_Tile meeting
25