Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ME375 System Modeling and Analysis Rotational Mechanical Systems Rotational Mechanical Systems • • • • Variables Basic Modeling Elements Interconnection Laws Derive Equation of Motion (EOM) Variables (t) J q K B • q : angular displacement [rad] • w : angular velocity [rad/sec] • a : angular acceleration [rad/sec2] • : torque [Nm] • p : power [Nm/sec] • w : work ( energy ) [Nm] 1 [Nm] = 1 [J] (Joule) d q q w dt d d d2 w q 2 q q a dt dt dt d p w q w dt t1 w(t1 ) w(t0 ) p(t ) dt t0 t1 w(t0 ) ( q ) dt t0 Basic Rotational Modeling Elements • Damper • Spring – Friction Element – Stiffness Element D w1 S w2 D B S q1 q2 b S K q 2 q1 g – Analogous to Translational Spring. – Stores Potential Energy. – E.g. shafts d i b D B q 2 q 1 B w 2 w 1 – Analogous to Translational Damper. – Dissipate Energy. – E.g. bearings, bushings, ... g Basic Rotational Modeling Elements • Moment of Inertia • Parallel Axis Theorem – Inertia Element J JO M r 2 d Ex: J JO M r2 J q i i – Analogous to Mass in Translational Motion. – Stores Kinetic Energy. 1 MR 2 Md 2 2 J JO M r2 2 1 L 2 ML M 12 2 1 ML2 3 Interconnection Laws • Newton’s Second Law • Lever (Motion Transformer Element) af d J w J q EXTi dt i Angular Momentum • Newton’s Third Law – Action & Reaction Torque J q f1d1 f 2d 2 Massless or small acceleration Jq 0 x1 d1q x2 d 2q f 2 x1 f1 x 2 f1 x1 f 2 x2 f1d1 f 2 d 2 f 2 d1 1 f1 d 2 N x1 d1 1 x2 d 2 N Motion Transformer Elements • Rack and Pinion • Gears 1 q f12 I ocm , r Bg F gr 1 f 21 2 Mr Br Ideal case Gear 1 0 J1 q1 1 f12 r1 Gear 2 0 J 2 q2 2 f 21r2 1 f12 r1 1 f12 r1 r1 1 2 f 21r2 r2 N 2 f 21r2 r1w1 r2w2 x w2 r 1 1 w1 r2 N 1 w1 2 w2 Fr 0 x rq F x q r r q F x Example Derive a model (EOM) for the following system: q (t) J q K B FBD: (Use Right-Hand Rule to determine direction) Translational Equivalent 0 s s s J K q D D J q s D s K ( 0 q ) Kq D B ( 0 q ) Bq J q Kq Bq J q Bq Kq B 0 D Energy Distribution • EOM of a simple Mass-Spring-Damper System Jq 0 Contribution of Inertia Bq 1 Contribution of the Damper Kq (t ) 1 Contribution of the Spring 3 Total Applied Torque We want to look at the energy distribution of the system. How should we start ? • Multiply the above equation by angular velocity term w : What have we done ? bg J q q Bq q Kq q t w • Integrate the second equation w.r.t. time: t1 t0 J q q dt KE change of kinetic energy t1 t0 Bw w dt t 2 t01 Bw dt 0 energy dissipated by damper t1 t0 What are we doing now ? K q q dt PE change of potential energy ( t ) w dt t1 t0 W Total work done by the applied torque ( t ) from time t0 to t1 Energy Method • Change of energy in system equals to net work done by external inputs KE change of kinetic energy • PE change of potential energy work done by external inputs (non-conservative inputs) Change of energy in system per unit time equals to net power exerted by external inputs d ( KE PE ) dt change of total energy per unit time • W P power exerted by external inputs (non-conservative inputs) EOM of a simple Mass-Spring-Damper System (t) q J B d 1 1 2 2 Jq Kq q Bq q dt 2 2 P KE PE 1 1 J 2q q K 2q q q Bq q 2 2 J q Kq Bq J q Bq Kq K Example • Rolling without slipping Elemental Laws: Mx F f f s f D f f Coefficient of friction m x q R f(t) K Jq f f R B f s Kx f D Bx J, M Kinematic Constraints: (no slipping) FBD: x Rq x Rq x q f(t) fs fd Mx f Kx Bx f f ff J Mg N x f fR R Example (cont.) I/O Model (Input: f, Output: x): Q: How would you decide whether or not the disk will slip? Mx f Kx Bx f f x J f fR f R 1 Jx f R2 If ff 1 Jx ms Mg 2 R Slipping happens. 1 Mx f Kx Bx 2 Jx R 1 M 2 J x Bx Kx f R M eff Q: How will the model be different if the disk rolls and slips ? x Rq does not hold any more f f mk Mg Example (Energy Method) • Rolling without slipping Coefficient of friction m x q R P Bx x f x K f B f(t) Power exerted by non-conservative inputs J, M D Energy equation d ( KE PE ) P dt Kinetic Energy 1 1 KE Mx 2 J q 2 2 2 Potential Energy 1 PE Kx 2 2 Mx x J q q Kx x f x Bx x Kinematic Constraints: (no slipping) x Rq x Rq EOM Mx x J x x Kx x f x Bx x R R J M 2 x Bx Kx f R M eff Example (coupled translation-rotation) q Bg I ocm , r F gr Mx Fgr Br x I o cmq Fgr r Bgq x x rq Mr Br Fgr r Bg I o cm x x r2 r2 Real world Bg I ocm M 2 x Br 2 x R R r M eff Think about performance of lever and gear train in real life Beff