Download ME375 Dynamic System Modeling and Control

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ME375
System Modeling and Analysis
Rotational Mechanical Systems
Rotational Mechanical Systems
•
•
•
•
Variables
Basic Modeling Elements
Interconnection Laws
Derive Equation of Motion (EOM)
Variables
 (t)
J
q
K
B
• q : angular displacement [rad]
• w : angular velocity [rad/sec]
• a : angular acceleration [rad/sec2]
•  : torque [Nm]
• p : power [Nm/sec]
• w : work ( energy ) [Nm]
1 [Nm] = 1 [J] (Joule)
d
q q w
dt
d  d  d2
w   q   2 q q a
dt  dt  dt
d
p    w   q  w
dt
t1
w(t1 )  w(t0 )   p(t ) dt
t0
t1
 w(t0 )   (  q ) dt
t0
Basic Rotational Modeling Elements
• Damper
• Spring
– Friction Element
– Stiffness Element
D
w1
S
w2
D
B
S
q1
q2
b
 S  K q 2  q1
g
– Analogous to Translational
Spring.
– Stores Potential Energy.
– E.g. shafts
d
i b
 D  B q 2  q 1  B w 2  w 1
– Analogous to Translational
Damper.
– Dissipate Energy.
– E.g. bearings, bushings, ...
g
Basic Rotational Modeling Elements
• Moment of Inertia
• Parallel Axis Theorem
– Inertia Element
J  JO  M r 2
d
Ex:
J  JO  M r2

J q    i
i
– Analogous to Mass in
Translational Motion.
– Stores Kinetic Energy.
1
MR 2  Md 2
2
J  JO  M r2
2
1
 L
2

ML  M  
12
2
1
 ML2
3
Interconnection Laws
• Newton’s Second Law
• Lever
(Motion Transformer Element)
af
d
J w  J q    EXTi


dt 
i
Angular
Momentum
• Newton’s Third Law
– Action & Reaction Torque
J q     f1d1  f 2d 2
Massless or small
acceleration
 Jq 0
x1  d1q
x2  d 2q
f 2 x1 

f1 x 2
f1  x1  f 2  x2
f1d1  f 2 d 2
f 2 d1
1



f1 d 2 N
x1 d1
1


x2 d 2 N
Motion Transformer Elements
• Rack and Pinion
• Gears
1

q
f12
I ocm , r
Bg
F gr
1
f 21
2
Mr
Br
Ideal case
Gear 1
0  J1 q1     1  f12 r1
Gear 2
0  J 2 q2     2  f 21r2
 1  f12 r1
1
f12 r1
r1
1





2
f 21r2
r2
N
 2  f 21r2
r1w1  r2w2 
x
w2
r
1
 1 
w1
r2
N
 1  w1   2  w2
  Fr  0
x  rq

F
x
q
 r
 r
 q  F  x
Example
Derive a model (EOM) for the
following system:
q
 (t)
J
q
K
B
FBD: (Use Right-Hand Rule
to determine direction)
Translational

Equivalent

0
s
s
s
J
K
q
D
D
J q       s   D
 s  K ( 0  q )   Kq
 D  B ( 0  q )   Bq
J q    Kq  Bq
J q  Bq  Kq  
B
0
D
Energy Distribution
• EOM of a simple Mass-Spring-Damper System
Jq

0
Contribution
of Inertia
Bq
1
Contribution
of the Damper
Kq

 (t )

1
Contribution
of the Spring
3
Total
Applied Torque
We want to look at the energy distribution of the system. How should we start ?
• Multiply the above equation by angular velocity term w :
 What have we done ?
bg
J q  q  Bq  q  Kq  q   t  w
• Integrate the second equation w.r.t. time:

t1
t0
J q  q dt
KE

change of
kinetic energy


t1
t0
Bw  w dt
t
2
t01 Bw dt  0

energy dissipated
by damper


t1
t0
 What are we doing now ?
K q  q dt
PE

change of
potential energy

  ( t )  w dt
t1
t0
W
Total work done by the
applied torque  ( t ) from
time t0 to t1
Energy Method
• Change of energy in system equals to net work done by external
inputs
KE 
change of
kinetic energy
•
PE

change of
potential energy
work done by
external inputs
(non-conservative inputs)
Change of energy in system per unit time equals to net power exerted by
external inputs
d
( KE  PE ) 
dt
change of
total energy
per unit time
•
W
P
power exerted by
external inputs
(non-conservative inputs)
EOM of a simple Mass-Spring-Damper System
 (t)
q
J
B


d 1
1
2
2 
Jq 
Kq     q  Bq  q
dt 
2
2
P


KE
PE


1
1
J  2q  q 
K  2q  q    q  Bq  q
2
2
J q  Kq    Bq
J q  Bq  Kq  
K
Example
• Rolling without slipping
Elemental Laws:
Mx   F  f  f s  f D  f f
Coefficient
of friction m
x
q
R
f(t)
K
Jq  f f R
B
f s  Kx
f D  Bx
J, M
Kinematic Constraints: (no slipping)
FBD:
x  Rq  x  Rq
x
q
f(t)
fs
fd
Mx  f  Kx  Bx  f f
ff
J
Mg
N
x
 f fR
R
Example (cont.)
I/O Model (Input: f, Output: x):
Q: How would you decide whether or not
the disk will slip?
Mx  f  Kx  Bx  f f
x
J  f fR f
R
1
Jx
f 
R2
If
ff 
1
Jx  ms Mg
2
R
Slipping happens.
1
Mx  f  Kx  Bx  2 Jx
R
1 

 M  2 J  x  Bx  Kx  f
R 

M eff
Q: How will the model be different if the
disk rolls and slips ?
x  Rq
does not hold any more
f f  mk Mg
Example (Energy Method)
•
Rolling without slipping
Coefficient
of friction m
x
q
R
P   Bx  x  f  x
K
f
B
f(t)
Power exerted by non-conservative inputs
J, M
D
Energy equation
d
( KE  PE )  P
dt
Kinetic Energy
1
1
KE  Mx 2  J q 2
2
2
Potential Energy
1
PE  Kx 2
2
 Mx  x  J q  q  Kx  x  f  x  Bx  x
Kinematic Constraints: (no slipping)
x  Rq  x  Rq
EOM
Mx  x  J
x x

 Kx  x  f  x  Bx  x
R R
J 

 M  2  x  Bx  Kx  f
R 

M eff
Example (coupled translation-rotation)
q
Bg

I ocm , r
F gr
Mx  Fgr  Br x
I o  cmq    Fgr r  Bgq
x
x  rq
Mr
Br
Fgr 

r

Bg
I o  cm
x

x
r2
r2
Real world
Bg  
I ocm  

 M  2  x   Br  2  x 
R  
R 
r

M eff
Think about performance of lever and
gear train in real life
Beff
Related documents