Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Analog Filters: Basics of OP AMP-RC Circuits Stefano Gregori The University of Texas at Dallas Introduction So far we have considered the theory and basic methods of realizing filters that use passive elements (inductors and capacitors) Another type of filters, the active filters, are in very common use They were originally motivated by the desire to realize inductorless filters, because of the three passive RLC elements the inductor is the most non-ideal one (especially for low-frequency applications of filters in which inductors are too costly or bulky) When low-cost, low-voltage solid-state devices became available, active filters became applicable over a much wider frequency range and competitive with passive ones Now both types of filters have their appropriate applications Stefano Gregori Basics of OP AMP-RC Circuits 2 Active-RC filters In this lesson we concentrate on active-RC filters. They make use of active devices as well as RC components. Active filters are usually designed without regard to the load or source impedance; the terminating impedance may not affect the performance of the filter it is possible to interconnect simple standard blocks to form complicated filters are noisy, have limited dynamic ranges and are prone to instability can be fabricated by integrated circuits Stefano Gregori Passive filters the terminating impedance is an integral part of the filter: this is a restriction on the synthesis procedure and reduces the number of possible circuits are less sensitive to element value variations are generally produced in discrete or hybrid form Basics of OP AMP-RC Circuits 3 Operational Amplifier symbol equivalent circuit i1 ee+ e2 Ro e+ e2 Ri A(e+-e-) e- In an ideal op-amp we assume: input resistance Ri approaches infinity, thus i1 = 0 output resistance Ro approaches zero amplifier gain A approaches infinity Stefano Gregori Basics of OP AMP-RC Circuits 4 Inverting voltage amplifier R2 R1 i (t ) i vin vout i vin (t ) R1 vout (t ) R2i(t ) Example: R2 vin (t ) R1 vin(t) given vin (t ) V0 sin2πft R1 = 1 kΩ R2 = 2 kΩ V0 = 1 V f = 1 MHz vout(t) we have vout (t ) R2 V0 sin2πft R1 Stefano Gregori Basics of OP AMP-RC Circuits 5 Weighted summer Rf vk (t ) ik (t ) Rk R1 v1 R2 v2 Rn vn vout vout (t ) R f i1 (t ) in (t ) v (t ) v (t ) R f 1 n Rn R1 Rf Stefano Gregori Basics of OP AMP-RC Circuits n vk (t ) R k k 1 6 Noninverting voltage amplifier R2 R1 i i (t ) i vout vin Example: vin (t ) R1 R2 vin (t ) vout (t ) R1 R2 i(t ) 1 R1 vin(t) given vin (t ) V0 sin2πft R1 = 1 kΩ R2 = 1 kΩ V0 = 1 V f = 1 MHz vout(t) we have R2 V0 sin2πft vout (t ) 1 R1 Stefano Gregori Basics of OP AMP-RC Circuits 7 Buffer amplifier vout vin vout (t ) vin (t ) Stefano Gregori Basics of OP AMP-RC Circuits 8 Inverting or Miller integrator C R vin vout i R = 1 kΩ C = 1 nF V0 = 1 V f = 1 MHz Example: given vin (t ) i (t ) R V Vout in dv (t ) s RC i (t ) C out dt t 1 vout (t ) vout (0) vin (t ) dt RC 0 vin(t) t0 0 vin (t ) V0 sin 2πft t 0 vout (0) 0 vout(t) we have vout (t ) V0 cos2πft 1 2πfRC Stefano Gregori Basics of OP AMP-RC Circuits 9 Inverting differentiator (1) R C vin i i (t ) C vout dvin (t ) dt vout (t ) Ri (t ) RC Example: given R = 1 kΩ C = 100 pF V0 = 1 V f = 1 MHz t0 0 vin (t ) V0 sin 2πft t 0 Vout s RC Vin dvin (t ) dt sC vin(t) vout(t) we have t0 0 vout (t ) 2πfRCV0 cos2πft t 0 Stefano Gregori Basics of OP AMP-RC Circuits 10 Inverting differentiator (2) R = 22 kΩ C = 47 pF vin(t) is a triangular waveform with: - vin max 2 V - vin min 0 V - frequency 500 kHz R C vin vout sC vin(t) vout(t) is a square waveform with: - vout max 2,068 V - vout min -2,068 V - frequency 500 kHz Stefano Gregori vout(t) Basics of OP AMP-RC Circuits 11 Inverting lossy integrator C R2 R1 vin vout Vout Stefano Gregori 1 1 R1 sC R2 Vin Basics of OP AMP-RC Circuits 12 Inverting weighted summing integrator C R1 v1 vout R2 v2 Rn vn Vout Stefano Gregori 1 sC n Vk R k 1 k Basics of OP AMP-RC Circuits 13 Subtractor R0 R1 v1 vout v2 R2 Vout Stefano Gregori R3 R0 R R R1 V1 3 0 V2 R1 R1 R2 R3 Basics of OP AMP-RC Circuits 14 Integrator and differentiator frequency behavior integrator integrator C differentiator R vin vout AV 1 2πfRC differentiator R C vin vout AV 2πfRC R = 1 kΩ C = 1 nF Stefano Gregori vin(t) is a sinewave with frequency f. Figure shows how circuit gain AV changes with the frequency f AV is the ratio between the amplitude of the output sinewave vout(t) and the amplitude of the input sinewave vin(t) Basics of OP AMP-RC Circuits 15 Low-pass and high-pass circuits low-pass circuit frequency behavior R vin voutlp low-pass high-pass C high-pass circuit C vouthp vin R R = 1 kΩ C = 1 nF Stefano Gregori Basics of OP AMP-RC Circuits 16 Inverting first-order section Z2 Z1 v1 v2 V2 Z2 Y1 V1 Z1 Y2 R2 R1 C2 v1 v2 V2 R 1 sR1C1 2 V1 R1 1 sR2C2 C1 inverting lossing integrator Stefano Gregori Basics of OP AMP-RC Circuits 17 Noninverting first-order section Z2 v2 V2 Z2 Y1 1 1 V1 Z1 Y2 v2 V2 R 1 sR1C1 1 2 V1 R1 1 sR2C2 Z1 v1 R2 R1 C2 C1 v1 noninverting lossing integrator Stefano Gregori Basics of OP AMP-RC Circuits 18 Finite-gain single op-amp configuration Many second-order or biquadratic filter circuits use a combination of a grounded RC threeport and an op-amp i2 V3 RC threeport V1 i1 V2 i3 I1 y11V1 y12V2 y13V3 I3 0 I 2 y 21V1 y 22V2 y 23V3 E3 E 2 / μ E2 E1 I 3 y31V1 y32V2 y33V3 Stefano Gregori Basics of OP AMP-RC Circuits y31 y33 y32 μ 19 Infinite-gain single op-amp configuration RC threeport V3 V2 V1 y31 E2 E1 y32 Stefano Gregori Basics of OP AMP-RC Circuits 20 Gain reduction Z Z1 V2 V1' N V2 N V1 Z2 V1 To reduce the gain to α times its original value (α < 1) we make V1 Z2 α V1 Z1 Z 2 and Z1 Z 2 Z Z1 Z 2 solving for Z1 and Z2, we get Z1 Z α Stefano Gregori and Z2 1 Z 1 α Basics of OP AMP-RC Circuits 21 Gain enhancement V2/K RC threeport 1/K V3 K V2 V1 A simple scheme is to increase the amplifier gain and decrease the feedback of the same amount E2 E1 Stefano Gregori Ky31 y y32 33 μ Basics of OP AMP-RC Circuits 22 RC-CR transformation (1) is applicable to a network N that contains resistors, capacitors, and dimensionless controlled sources conductance of Gi [S] → capacitance of Gi [F] capacitance of Cj [F] → conductance of Cj [S] the corresponding network functions with the dimension of the impedance must satisfy Z ( s ) 1 1 Z s s the corresponding network functions with the dimension of the admittance must satisfy 1 Y ( s ) sY s the corresponding network functions that are dimensionless must satisfy 1 H ( s ) H s Stefano Gregori Basics of OP AMP-RC Circuits 23 RC-CR transformation (2) N N’ 1/3 F 1 1F 2 2 v1 3 v2 1/2 F 2 v1' 2 1/2 F V 12 H ( s) 2 2 V1 2s 7 s 6 V2 12 s 2 H (s) 2 V1 6s 7s 2 V1 2s 2 7s 6 Z11 ( s) I1 s(2s 1) V1 6s 2 7s 2 ( s) Z11 I1 s( s 2) Stefano Gregori v2' Basics of OP AMP-RC Circuits 24 Sallen-Key filters lowpass filter frequency behavior C lowpass R R highpass vout vin C bandpass highpass filter R C C vout vin R Stefano Gregori R = 1 kΩ C = 1 nF Basics of OP AMP-RC Circuits 25 Types of biquadratic filters lowpass highpass Gb0 s b1s b0 2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 2 4 6 8 10 Stefano Gregori bandpass Gs 2 s b1s b0 2 2 4 6 8 10 bandreject Gb1 s s 2 b1s b0 allpass a 2 s 2 a0 G s 2 b1s b0 1 1 1 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 2 4 6 8 10 2 4 Basics of OP AMP-RC Circuits 6 8 10 s 2 b1s b0 s 2 b1s b0 2 4 6 8 10 26