Download Alg 2 Final Exam Rev - Clinton Public Schools

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Algebra 2
Final
Exam Review
Multiple Choice
Identify the choice that best completes the statement or answers the question.
Evaluate the logarithm.
____
____
1.
a. 7
b. 3
c. 2
d. –3
a. 7
b. –1
c. 2
d. –2
2.
State the property or properties of logarithms used to rewrite the expression.
____
____
3.
a. Difference Property
b. Product Property
c. Power Property
d. Quotient Property
a. Product Property
b. Commutative Property
c. Quotient Property
d. Power Property
4.
Multiply or divide. State any restrictions on the variables.
____
____
____
5.
a.
c.
b.
d.
a.
c.
b.
d.
2
5
6.
7. Solve
a. 365.878
. Round to the nearest thousandth.
b. 1,095.633
c. 365.211
Write the expression as a single natural logarithm.
d. 1,096.966
____
8.
a.
b.
c.
d.
Simplify the rational expression. State any restrictions on the variable.
____
9.
a.
b.
c.
d.
a.
c.
b.
d.
____ 10.
____ 11. Solve
a. 4
.
b.
c.
 13
8
d.
1
2
5
4
Graph the exponential function.
____ 12.
a.
c.
y
y
4
–6
–4
20
16
–2
2
4
6 x
–4
12
–8
8
–12
4
–16
–20
–6
–4
–2
2
–4
4
6 x
b.
d.
y
–6
–4
y
20
20
16
16
12
12
8
8
4
4
–2
2
4
–6
6 x
–4
–4
–2
2
4
6 x
–4
Expand the logarithmic expression.
____ 13.
a.
b.
c.
d.
a.
c.
b.
d.
____ 14.
Write the equation in logarithmic form.
____ 15.
a.
b.
c.
d.
a.
b.
c.
d.
____ 16.
Write the expression as a single logarithm.
____ 17.
a.
c.
b.
d.
____ 18. Find the coordinates of the midpoint of the segment whose endpoints are H(2, 11) and K(4, 1).
a. (3, 6)
b. (1, 5)
c. (6, 12)
d. (2, 10)
Use natural logarithms to solve the equation. Round to the nearest thousandth.
____ 19.
a. 0.742
b. 0.236
c. 0.482
d. –2.697
c.
d.
Simplify the complex fraction.
____ 20.
a.
b.
7
2
2
7
 2
21
 21
2
____ 21. Write the expression (x + 6)(x – 4) as a polynomial in standard form.
a. x2 – 10x + 2
c. x2 + 2x – 24
2
b. x + 10x – 24
d. x2 + 10x – 10
Write in standard form an equation of the line passing through the given point with the given slope.
____ 22. slope = –8; (–2, –2)
a. 8x + y = –18
b. –8x + y = –18
____ 23. Graph the function
a.
–6
–3
c. 8x – y = –18
d. 8x + y = 18
.
c.
y
y
6
6
3
3
O
3
6
x
–6
–3
O
–3
–3
–6
–6
3
6
x
b.
d.
y
–6
–3
6
6
3
3
O
3
6
–6
x
–3
O
–3
–3
–6
–6
Solve the matrix equation.
____ 24.
a.
c.
b.
d.
Find the product.
____ 25.
a.
c.
b.
d. [12]
Divide using synthetic division.
____ 26.
a.
b.
y
c.
d.
3
6
x
Algebra 2
Answer Section
Final
Exam Review
MULTIPLE CHOICE
1. ANS: B
PTS: 1
DIF: L3
REF: 8-3 Logarithmic Functions as Inverses
OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions
STA: MS AII 6a | MS AII 6b
TOP: 8-3 Example 3
KEY: evaluating logarithms
2. ANS: D
PTS: 1
DIF: L4
REF: 8-3 Logarithmic Functions as Inverses
OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions
STA: MS AII 6a | MS AII 6b
TOP: 8-3 Example 3
KEY: evaluating logarithms
3. ANS: D
PTS: 1
DIF: L3
REF: 8-4 Properties of Logarithms
OBJ: 8-4.1 Using the Properties of Logarithms
STA: MS AII 6d
TOP: 8-4 Example 1
KEY: properties of logarithms | Quotient Property of Logarithms
4. ANS: D
PTS: 1
DIF: L4
REF: 8-4 Properties of Logarithms
OBJ: 8-4.1 Using the Properties of Logarithms
STA: MS AII 6d
TOP: 8-4 Example 1
KEY: properties of logarithms | Power Property of Logarithms
5. ANS: A
PTS: 1
DIF: L2
REF: 9-4 Rational Expressions
OBJ: 9-4.2 Multiplying and Dividing Rational Expressions
STA: MS AII 5a
TOP: 9-4 Example 3
KEY: simplifying a rational expression | restrictions on a variable | multiplying rational expressions
6. ANS: B
PTS: 1
DIF: L2
REF: 9-4 Rational Expressions
OBJ: 9-4.2 Multiplying and Dividing Rational Expressions
STA: MS AII 5a
TOP: 9-4 Example 4
KEY: restrictions on a variable | dividing rational expressions
7. ANS: A
PTS: 1
DIF: L3
REF: 8-6 Natural Logarithms
OBJ: 8-6.2 Natural Logarithmic and Exponential Equations
TOP: 8-6 Example 3
KEY: natural logarithmic equation | properties of logarithms
8. ANS: B
PTS: 1
DIF: L3
REF: 8-6 Natural Logarithms
OBJ: 8-6.1 Natural Logarithms
TOP: 8-6 Example 1
KEY: simplifying a natural logarithm | properties of logarithms
9. ANS: C
PTS: 1
DIF: L2
REF: 9-4 Rational Expressions
OBJ: 9-4.1 Simplifying Rational Expressions
STA: MS AII 5a
TOP: 9-4 Example 1
KEY: rational expression | simplifying a rational expression | restrictions on a variable
10. ANS: C
PTS: 1
DIF: L2
REF: 9-4 Rational Expressions
OBJ: 9-4.1 Simplifying Rational Expressions
STA: MS AII 5a
TOP: 9-4 Example 1
KEY: rational expression | simplifying a rational expression | restrictions on a variable
11. ANS: C
PTS: 1
DIF: L3
REF: 8-5 Exponential and Logarithmic Equations
OBJ: 8-5.2 Solving Logarithmic
Equations
STA: MS AII 6c | MS AII 6d
TOP: 8-5 Example 6
KEY: logarithmic equation | properties of logarithms
12. ANS: C
PTS: 1
DIF: L3
REF: 8-1 Exploring Exponential Models
OBJ: 8-1.1 Exponential Growth
STA: MS AII 6d
TOP: 8-1 Example 1
KEY: exponential function | graphing
13. ANS: A
PTS: 1
DIF: L3
REF: 8-4 Properties of Logarithms
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
OBJ: 8-4.1 Using the Properties of Logarithms
STA: MS AII 6d
TOP: 8-4 Example 3
KEY: properties of logarithms | expanding logarithms | Product Property of Logarithms | Power Property of
Logarithms
ANS: C
PTS: 1
DIF: L3
REF: 8-4 Properties of Logarithms
OBJ: 8-4.1 Using the Properties of Logarithms
STA: MS AII 6d
TOP: 8-4 Example 3
KEY: properties of logarithms | expanding logarithms | Quotient Property of Logarithms
ANS: C
PTS: 1
DIF: L3
REF: 8-3 Logarithmic Functions as Inverses
OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions
STA: MS AII 6a | MS AII 6b
TOP: 8-3 Example 2
KEY: logarithm | logarithmic form
ANS: B
PTS: 1
DIF: L3
REF: 8-3 Logarithmic Functions as Inverses
OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions
STA: MS AII 6a | MS AII 6b
TOP: 8-3 Example 2
KEY: logarithm | logarithmic form
ANS: A
PTS: 1
DIF: L4
REF: 8-4 Properties of Logarithms
OBJ: 8-4.1 Using the Properties of Logarithms
STA: MS AII 6d
TOP: 8-4 Example 2
KEY: properties of logarithms | logarithm | Product Property of Logarithms | Power Property of Logarithms
ANS: A
PTS: 1
DIF: L2
REF: 1-8 The Coordinate Plane
OBJ: 1-8.2 Finding the Midpoint of a Segment
NAT: NAEP 2005 M1e | ADP J.1.6 | ADP K.10.3
TOP: 1-8 Example 3
KEY: coordinate plane | Midpoint Formula
ANS: C
PTS: 1
DIF: L4
REF: 8-6 Natural Logarithms
OBJ: 8-6.2 Natural Logarithmic and Exponential Equations
TOP: 8-6 Example 4
KEY: exponential equation | properties of logarithms
ANS: C
PTS: 1
DIF: L2
REF: 9-5 Adding and Subtracting Rational Expressions
OBJ: 9-5.2 Simplifying Complex
Fractions
STA: MS AII 5a
TOP: 9-5 Example 5
KEY: complex fraction | simplifying a rational expression | simplifying a complex fraction
ANS: C
PTS: 1
DIF: L2
REF: 6-2 Polynomials and Linear Factors
OBJ: 6-2.1 The Factored Form of a Polynomial
STA: MS AII 1d
TOP: 6-2 Example 1
KEY: polynomial | standard form of a polynomial
ANS: A
PTS: 1
DIF: L2
REF: 2-2 Linear Equations
OBJ: 2-2.2 Writing Equations of Lines
TOP: 2-2 Example 4
KEY: point-slope form | standard form of linear equation
ANS: A
PTS: 1
DIF: L2
REF: 2-6 Families of Functions
OBJ: 2-6.2 Stretches | Shrinks | and Reflections
TOP: 2-6 Example 5
KEY: stretch and shrink | reflection
ANS: B
PTS: 1
DIF: L2
REF: 4-3 Matrix Multiplication
OBJ: 4-3.1 Multiplying a Matrix by a Scalar
STA: MS AII 7d
TOP: 4-3 Example 3
KEY: scalar | scalar multiplication | matrix | matrix equation
ANS: D
PTS: 1
DIF: L3
REF: 4-3 Matrix Multiplication
OBJ: 4-3.2 Multiplying Matrices
STA: MS AII 7d
TOP: 4-3 Example 4
KEY: matrix multiplication | matrix
ANS: D
PTS: 1
DIF: L3
REF: 6-3 Dividing Polynomials
OBJ: 6-3.2 Using Synthetic Division
TOP: 6-3 Example 3
KEY: division of polynomials | polynomial | synthetic division
Related documents