Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Algebra 2 Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the logarithm. ____ ____ 1. a. 7 b. 3 c. 2 d. –3 a. 7 b. –1 c. 2 d. –2 2. State the property or properties of logarithms used to rewrite the expression. ____ ____ 3. a. Difference Property b. Product Property c. Power Property d. Quotient Property a. Product Property b. Commutative Property c. Quotient Property d. Power Property 4. Multiply or divide. State any restrictions on the variables. ____ ____ ____ 5. a. c. b. d. a. c. b. d. 2 5 6. 7. Solve a. 365.878 . Round to the nearest thousandth. b. 1,095.633 c. 365.211 Write the expression as a single natural logarithm. d. 1,096.966 ____ 8. a. b. c. d. Simplify the rational expression. State any restrictions on the variable. ____ 9. a. b. c. d. a. c. b. d. ____ 10. ____ 11. Solve a. 4 . b. c. 13 8 d. 1 2 5 4 Graph the exponential function. ____ 12. a. c. y y 4 –6 –4 20 16 –2 2 4 6 x –4 12 –8 8 –12 4 –16 –20 –6 –4 –2 2 –4 4 6 x b. d. y –6 –4 y 20 20 16 16 12 12 8 8 4 4 –2 2 4 –6 6 x –4 –4 –2 2 4 6 x –4 Expand the logarithmic expression. ____ 13. a. b. c. d. a. c. b. d. ____ 14. Write the equation in logarithmic form. ____ 15. a. b. c. d. a. b. c. d. ____ 16. Write the expression as a single logarithm. ____ 17. a. c. b. d. ____ 18. Find the coordinates of the midpoint of the segment whose endpoints are H(2, 11) and K(4, 1). a. (3, 6) b. (1, 5) c. (6, 12) d. (2, 10) Use natural logarithms to solve the equation. Round to the nearest thousandth. ____ 19. a. 0.742 b. 0.236 c. 0.482 d. –2.697 c. d. Simplify the complex fraction. ____ 20. a. b. 7 2 2 7 2 21 21 2 ____ 21. Write the expression (x + 6)(x – 4) as a polynomial in standard form. a. x2 – 10x + 2 c. x2 + 2x – 24 2 b. x + 10x – 24 d. x2 + 10x – 10 Write in standard form an equation of the line passing through the given point with the given slope. ____ 22. slope = –8; (–2, –2) a. 8x + y = –18 b. –8x + y = –18 ____ 23. Graph the function a. –6 –3 c. 8x – y = –18 d. 8x + y = 18 . c. y y 6 6 3 3 O 3 6 x –6 –3 O –3 –3 –6 –6 3 6 x b. d. y –6 –3 6 6 3 3 O 3 6 –6 x –3 O –3 –3 –6 –6 Solve the matrix equation. ____ 24. a. c. b. d. Find the product. ____ 25. a. c. b. d. [12] Divide using synthetic division. ____ 26. a. b. y c. d. 3 6 x Algebra 2 Answer Section Final Exam Review MULTIPLE CHOICE 1. ANS: B PTS: 1 DIF: L3 REF: 8-3 Logarithmic Functions as Inverses OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions STA: MS AII 6a | MS AII 6b TOP: 8-3 Example 3 KEY: evaluating logarithms 2. ANS: D PTS: 1 DIF: L4 REF: 8-3 Logarithmic Functions as Inverses OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions STA: MS AII 6a | MS AII 6b TOP: 8-3 Example 3 KEY: evaluating logarithms 3. ANS: D PTS: 1 DIF: L3 REF: 8-4 Properties of Logarithms OBJ: 8-4.1 Using the Properties of Logarithms STA: MS AII 6d TOP: 8-4 Example 1 KEY: properties of logarithms | Quotient Property of Logarithms 4. ANS: D PTS: 1 DIF: L4 REF: 8-4 Properties of Logarithms OBJ: 8-4.1 Using the Properties of Logarithms STA: MS AII 6d TOP: 8-4 Example 1 KEY: properties of logarithms | Power Property of Logarithms 5. ANS: A PTS: 1 DIF: L2 REF: 9-4 Rational Expressions OBJ: 9-4.2 Multiplying and Dividing Rational Expressions STA: MS AII 5a TOP: 9-4 Example 3 KEY: simplifying a rational expression | restrictions on a variable | multiplying rational expressions 6. ANS: B PTS: 1 DIF: L2 REF: 9-4 Rational Expressions OBJ: 9-4.2 Multiplying and Dividing Rational Expressions STA: MS AII 5a TOP: 9-4 Example 4 KEY: restrictions on a variable | dividing rational expressions 7. ANS: A PTS: 1 DIF: L3 REF: 8-6 Natural Logarithms OBJ: 8-6.2 Natural Logarithmic and Exponential Equations TOP: 8-6 Example 3 KEY: natural logarithmic equation | properties of logarithms 8. ANS: B PTS: 1 DIF: L3 REF: 8-6 Natural Logarithms OBJ: 8-6.1 Natural Logarithms TOP: 8-6 Example 1 KEY: simplifying a natural logarithm | properties of logarithms 9. ANS: C PTS: 1 DIF: L2 REF: 9-4 Rational Expressions OBJ: 9-4.1 Simplifying Rational Expressions STA: MS AII 5a TOP: 9-4 Example 1 KEY: rational expression | simplifying a rational expression | restrictions on a variable 10. ANS: C PTS: 1 DIF: L2 REF: 9-4 Rational Expressions OBJ: 9-4.1 Simplifying Rational Expressions STA: MS AII 5a TOP: 9-4 Example 1 KEY: rational expression | simplifying a rational expression | restrictions on a variable 11. ANS: C PTS: 1 DIF: L3 REF: 8-5 Exponential and Logarithmic Equations OBJ: 8-5.2 Solving Logarithmic Equations STA: MS AII 6c | MS AII 6d TOP: 8-5 Example 6 KEY: logarithmic equation | properties of logarithms 12. ANS: C PTS: 1 DIF: L3 REF: 8-1 Exploring Exponential Models OBJ: 8-1.1 Exponential Growth STA: MS AII 6d TOP: 8-1 Example 1 KEY: exponential function | graphing 13. ANS: A PTS: 1 DIF: L3 REF: 8-4 Properties of Logarithms 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. OBJ: 8-4.1 Using the Properties of Logarithms STA: MS AII 6d TOP: 8-4 Example 3 KEY: properties of logarithms | expanding logarithms | Product Property of Logarithms | Power Property of Logarithms ANS: C PTS: 1 DIF: L3 REF: 8-4 Properties of Logarithms OBJ: 8-4.1 Using the Properties of Logarithms STA: MS AII 6d TOP: 8-4 Example 3 KEY: properties of logarithms | expanding logarithms | Quotient Property of Logarithms ANS: C PTS: 1 DIF: L3 REF: 8-3 Logarithmic Functions as Inverses OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions STA: MS AII 6a | MS AII 6b TOP: 8-3 Example 2 KEY: logarithm | logarithmic form ANS: B PTS: 1 DIF: L3 REF: 8-3 Logarithmic Functions as Inverses OBJ: 8-3.1 Writing and Evaluating Logarithmic Expressions STA: MS AII 6a | MS AII 6b TOP: 8-3 Example 2 KEY: logarithm | logarithmic form ANS: A PTS: 1 DIF: L4 REF: 8-4 Properties of Logarithms OBJ: 8-4.1 Using the Properties of Logarithms STA: MS AII 6d TOP: 8-4 Example 2 KEY: properties of logarithms | logarithm | Product Property of Logarithms | Power Property of Logarithms ANS: A PTS: 1 DIF: L2 REF: 1-8 The Coordinate Plane OBJ: 1-8.2 Finding the Midpoint of a Segment NAT: NAEP 2005 M1e | ADP J.1.6 | ADP K.10.3 TOP: 1-8 Example 3 KEY: coordinate plane | Midpoint Formula ANS: C PTS: 1 DIF: L4 REF: 8-6 Natural Logarithms OBJ: 8-6.2 Natural Logarithmic and Exponential Equations TOP: 8-6 Example 4 KEY: exponential equation | properties of logarithms ANS: C PTS: 1 DIF: L2 REF: 9-5 Adding and Subtracting Rational Expressions OBJ: 9-5.2 Simplifying Complex Fractions STA: MS AII 5a TOP: 9-5 Example 5 KEY: complex fraction | simplifying a rational expression | simplifying a complex fraction ANS: C PTS: 1 DIF: L2 REF: 6-2 Polynomials and Linear Factors OBJ: 6-2.1 The Factored Form of a Polynomial STA: MS AII 1d TOP: 6-2 Example 1 KEY: polynomial | standard form of a polynomial ANS: A PTS: 1 DIF: L2 REF: 2-2 Linear Equations OBJ: 2-2.2 Writing Equations of Lines TOP: 2-2 Example 4 KEY: point-slope form | standard form of linear equation ANS: A PTS: 1 DIF: L2 REF: 2-6 Families of Functions OBJ: 2-6.2 Stretches | Shrinks | and Reflections TOP: 2-6 Example 5 KEY: stretch and shrink | reflection ANS: B PTS: 1 DIF: L2 REF: 4-3 Matrix Multiplication OBJ: 4-3.1 Multiplying a Matrix by a Scalar STA: MS AII 7d TOP: 4-3 Example 3 KEY: scalar | scalar multiplication | matrix | matrix equation ANS: D PTS: 1 DIF: L3 REF: 4-3 Matrix Multiplication OBJ: 4-3.2 Multiplying Matrices STA: MS AII 7d TOP: 4-3 Example 4 KEY: matrix multiplication | matrix ANS: D PTS: 1 DIF: L3 REF: 6-3 Dividing Polynomials OBJ: 6-3.2 Using Synthetic Division TOP: 6-3 Example 3 KEY: division of polynomials | polynomial | synthetic division