Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry: 2.3: Biconditionals and Definitions Define: Biconditional: _____________________________________________________________ 1) Writing a Biconditional: Statement: If the sum of the measures of two angles is 180, then the two angles are supplementary. Converse: ___________________________________________________________ Is the converse true or false? _________ Biconditional: _______________________________________________________ You try: Statement: If two angles have equal measure, then the angles are congruent. Converse: ___________________________________________________________ Is the converse true or false? _________ Biconditional: _______________________________________________________ 2) Identifying the conditionals in a biconditional: What are the two statements that form this biconditional? A ray is an angle bisector, if and only if it divides an angle into two congruent angles. p: _____________________________________________________________ q: _____________________________________________________________ πβΆπ: _____________________________________________________________ π βΆ π: _____________________________________________________________ You Try: What are the two conditionals that form this biconditional? Two numbers are reciprocals if and only if their product is 1 p: _____________________________________________________________ q: _____________________________________________________________ πβΆπ: _____________________________________________________________ π βΆ π: _____________________________________________________________ True biconditionals serve as effective definitions. Here are the qualities that make for a good definition: οΌ A good definition ___________________________________. These terms should be commonly understood or already defined. οΌ A good definition is_____________________. Good definitions avoid words such as large, sort of, and almost. οΌ A good definition is ____________________. That means you can write a good definition as a true biconditional. 3) Writing a Definition as a Biconditional: Is this definition of a quadrilateral reversible? If yes, write as a true biconditional. Definition: A quadrilateral is a polygon with 4 sides. Conditional:____________________________________________________ _______________________________________________________________ ________________________ Converse:______________________________________________________ _______________________________________________________________ _________________________ Biconditional: ___________________________________________________________ You Try: Is this definition of a quadrilateral reversible? If yes, write it as a true biconditional. Definition: A straight angle is an angle that measures 180o. Conditional:____________________________________________________ _______________________________________________________________ ________________________ Converse:______________________________________________________ _______________________________________________________________ _________________________ Biconditional: ___________________________________________________________ 4) Identifying a Good Definition Good definitions cannot be disproven by a counter example. Evaluate the definitions below: A. A fish is an animal that swims B. Rectangles have 4 corners. C. Giraffes are animals with very long necks. D. A penny is a coin worth one cent. You try: Is the following statement a good definition? Explain. A square is a figure with four right angles.