Download 1.3 Some limit theorems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1.3 Some Limit Theorem
Theorem 2:
Let
px   c0  c1 x    cn x n be a polynomial, where c0 , c1 ,, cn
are real numbers and n is a fixed nonnegative integer. Then, for every real
x0 ,
number
lim px   px0   c0  c1 x0  c2 x02    cn x0n .
xx0
Theorem 3:
f x  and lim g x 
Let c be a real number, and suppose that both xlim
x
x x
0
exist. Then
cf x, lim  f x  g x, lim f xg x all exist.
(i) xlim
x
xx
x x
0
0
0
cf x   c lim f x  .
(ii) xlim
x
x x
0
0
 f x  g x  xlim
f x   lim g x 
(iii) xlim
x
x
x x
0
0
0
f x g x    lim f x   lim g x  .
(iv) xlim
 x x
  x x

x

0
0
g x   0 , then lim
(v) If xlim
x x0
x
0

0

f x 
exists and
g x 
f x 
f  x  xlim
 x0
lim

x  x0 g  x 
lim g  x  .
x  x0
Example 9:
By theorem 1,


lim x 3  2 x  6  33  2  3  6  27 .
x3
1
0
Example 10:
 x 2  1  by theorem2, (ii)
 x 2  1  by example 3

  3  2  6 .
lim 3

3 lim 
x1
x1
x

1
x

1




Example 11:
 x2 1
 by theorem2, (iii)  x 2  1 
3
  lim 4 x 3  3
lim 
 4 x  3 

lim 
x 1
x 1
 x 1

 x  1  x1
 2  4 13  3  9


Example 12:


lim x  3
2
x1
2
by theorem2, (iv)

since


x1



lim x 2  3  lim x 2  3  2  2  4

x1
lim x 2  3   1  3  2 .
x1
2
Example 13:




x3  x 2  3
 x3  x 2  3  by theorem2, (v) lim
45
x4

lim  2


 5,
2
x4 x  3x  5
lim
x

3
x

5
9


x4
since


lim x 3  x 2  3  43  42  3  45
x4
and


lim x 2  3x  5  42  3  4  5  9  0 .
x4
Example 14:


lim x  3
x1
2
10
by theorem2, (iv)







lim x 2  3  lim x 2  3  lim x 2  3
x1
x1
 2  2   2  1024
2
x1
Related documents