Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
EE247 Lecture 16 D/A converters continued: • • • • • Current based DACs-unit element versus binary weighted Static performance – Component matching-systematic & random errors Practical aspects of current-switched DACs Segmented current-switched DACs DAC self calibration techniques – Current copiers – Dynamic element matching ADC Converters • Sampling – Sampling switch induced distortion – Sampling switch charge injection EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 1 Current Source DAC Unit Element …………… Iref …………… • • • • • Iout Iref Iref Iref “Unit elements ” 2B-1 current sources & switches Monotonicity does not depend on element matching Suited for both MOS and BJT technologies Output resistance of current source causes gain error EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 2 Current Source DAC Unit Element R …………… Vout + Iref …………… • Iref Iref Iref Output resistance of current source à gain error problem à Use transresistance amplifier - Current source output held @ virtual ground - Error due to current source output resistance eliminated - New issues: offset & speed of the amplifier EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 3 Current Source DAC Binary Weighted …………… 2B-1 Iref …………… Iout 4 Iref 2Iref Iref • “Binary weighted” • B current sources & switches (2B-1 unit current sources but less # of switches) • Monotonicity depends on element matching EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 4 Static DAC INL / DNL Errors • Component matching • Systematic errors – – – – Finite current source output resistance Contact resistance Edge effects in capacitor arrays Process gradient • Random errors – Lithography – Often Gaussian distribution (central limit theorem) *Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSC Aug. 1989, pp. 1118-28. EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 5 Probability density p(x) Gaussian Distribution 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 ( x−µ ) 2 p( x ) = 1 2πσ − e 2σ -3 -2 -1 0 1 2 3 x /σ 2 where standard deviation : σ = E( x2 ) − µ 2 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 6 P (− X ≤ x ≤ + X ) = = 1 +X − 2π −X ∫ e x2 2 dx Probability density p(x) Yield P(-X ≤ x ≤ +X) X = erf 2 0.4 0.3 0.2 0.1 0 1 0.8 0.6 0.4 0.2 0 95.4 68.3 38.3 0 0.5 1 1.5 2 2.5 3 X EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 7 Yield X/σ 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 P(-X ≤ x ≤ X) [%] 15.8519 31.0843 45.1494 57.6289 68.2689 76.9861 83.8487 89.0401 92.8139 95.4500 EECS 247 Lecture 16: Data Converters X/σ 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 P(-X ≤ x ≤ X) [%] 97.2193 98.3605 99.0678 99.4890 99.7300 99.8626 99.9326 99.9682 99.9855 99.9937 © 2005 H.K. Page 8 Example • Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with σ = 2mV and µ = 0. • Fraction of opamps with |Vos| < 6mV: – X/σ = 3 à 99.73 % yield • Fraction of opamps with |Vos| < 400µV: – X/σ = 0.2 à 15.85 % yield EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 9 Component Mismatch Example: Side-by-side resistors ……. Large # of devices measured & curved à typically if sample size is large shape is Gaussian No. of resistors ……. 400 300 ∆R 200 R 100 0 988 992 996 1000 1004 1008 1012 R[ Ω ] E.g. Let us assume in this example large # of Rs with average of 1000OHM measured: 68.5% within +-4OHM or +-0.4% of average à 1σ for resistorsà 0.4% EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 10 Probability density p(x) Component Mismatch Two side-by-side Resistors R= R1 + R2 2 0.4 0.35 0.3 0.25 ∆R 0.2 R 0.15 0.1 0.05 0 −3σ −2σ dR = R1 − R2 σ d2R ∝ R −σ 0 σ 2σ For typical technologies & geometries 1σ for resistorsà 0.02 το 5% 1 Area 3σ dR R In the case of resistors σ is a function of area EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 11 DNL Unit Element DAC E.g. Resistor string DAC: Vref ∆ = Rmedian I ref Iref ∆i = Ri I r e f DNLi = = ∆median − ∆i ∆median Ri − R median R median = dR R median ≈ dR Ri ∆i = Ri I ref σ DNL = σ d Ri Ri DNL of unit element DAC is independent of resolution! EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 12 DNL Unit Element DAC E.g. Resistor string DAC: Example: If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec? σ DNL = σ d R i Ri DNL of unit element DAC is independent of resolution! Note similar results for all unit-element based DACs EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 13 Yield X/σ 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 2.0000 P(-X ≤ x ≤ X) [%] 15.8519 31.0843 45.1494 57.6289 68.2689 76.9861 83.8487 89.0401 92.8139 95.4500 EECS 247 Lecture 16: Data Converters X/σ 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000 P(-X ≤ x ≤ X) [%] 97.2193 98.3605 99.0678 99.4890 99.7300 99.8626 99.9326 99.9682 99.9855 99.9937 © 2005 H.K. Page 14 DNL Unit Element DAC Example: If σdR/R = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec? E.g. Resistor string DAC: σ DNL = σ d R i Ri Answer: From table: for 99.9% à X/σ = 3.3 σDNL = σdR/R = 0.4% 3.3 σDNL = 1.3% àDNL= +/- 0.013 LSB EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 15 DAC INL Analysis Output [LSB] N B E n A n N=2B-1 Input [LSB] A=n+E Ideal n B=N-n-E N-n Variance n.σε2 (N-n).σε2 E = A-n r =n/N N=A+B = A-r(A+B) = A (1-r) -B.r à Variance of E: σE2 =(1-r)2 .σΑ2 + r 2 .σB2 =N.r .(1-r).σε2 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 16 DAC INL n σ E 2 = n 1 − ×σ ε 2 N To find m a x . v a r i a n c e : → n=N/2 • dσ E 2 dn =0 Error is maximum at mid-scale (N/2): σ INL = 1 2B − 1 σ ε 2 with N = 2 B − 1 • INL depends on DAC resolution and element matching σε • While σDNL = σε Ref: Kuboki et al, TCAS, 6/1982 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 17 Untrimmed DAC INL Example: σ INL ≅ 1 B 2 −1 σε 2 σ B ≅ 2 + 2 log2 INL σε EECS 247 Lecture 16: Data Converters Assume the following requirement: σINL = 0.1 LSB Then: σε = 1% σε = 0.5% σε = 0.2% σε = 0.1% à à à à B = 8.6 B = 10.6 B = 13.3 B = 15.3 © 2005 H.K. Page 18 Simulation Example 12 Bit converter DNL and INL DNL [LSB] 2 1 -0.04 / +0.03 LSB 0 -1 500 1000 1500 2000 2500 3000 3500 4000 σε = 1% B = 12 Random # generator used in MatLab bin INL LSB] 2 1 -0.2 / +0.8 LSB Computed INL: 0 -1 500 1000 1500 2000 2500 3000 3500 4000 σDNL = 0.01 LSB σINL = 0.3 LSB (midscale) bin EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 19 Binary Weighted DAC INL/DNL • INL same as for unit element DAC • DNL depends on transition – Example: 0 to 1 àσDNL2 = σ(dΙ/Ι) 2 1 to 2 à σDNL2 = 3σ(dΙ/Ι) 2 • Consider MSB transition: 0111 … à 1000 … EECS 247 Lecture 16: Data Converters Iout 2B-1 Iref …………… 4 Iref 2Iref Iref © 2005 H.K. Page 20 MOS Device Matching Effects Id = Id1 + Id 2 2 Id1 dId Id1 − Id 2 = Id Id Id2 dId dW L dVth = + W Id VGS −Vth L • Current matching depends on: - Device W/L ratio matching à Larger device area less mismatch effect - Threshold voltage matching à Larger gate-overdrive less threshold voltage mismatch effect EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 21 Current-Switched DACs in CMOS Iout Iref d Id Id = dW L W L + Switch Array d Vth …… VG S −Vth 256 •Advantages: Can be very fast Small area for < 9-10bits 128 64 ………..…..1 Example: 8bit Binary Weighted •Disadvantages: Accuracy depends on device W/L & Vth matching EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 22 Binary Weighted DAC DNL • Worst-case transition occurs at mid-scale: 15 ( ) ( ) σDNL2/ σε2 2 σ DNL = 2B−1 − 1 σε2 + 2B−1 σε2 10 144244 3 14243 0111... 1000... ≅ 2Bσε2 σ DNLmax = 2B / 2σε 5 σ I N Lmax ≅ • 0 2 4 6 8 10 12 14 1 2 2B − 1 σ ε ≅ 1 2 σ DNLmax Example: B = 12, σε = 1% DAC input code EECS 247 Lecture 16: Data Converters à σDNL = 0.64 LSB à σINL = 0.32 LSB © 2005 H.K. Page 23 “Another” Random Run … DNL and INL of 12 Bit converter DNL [LSB] 2 -1 / +0.1 LSB, 1 Now (by chance) worst DNL is mid-scale. 0 -1 -2 500 1000 1500 2000 2500 3000 3500 4000 bin Close to statistical result! INL [LSB] 2 -0.8 / +0.8 LSB 1 0 -1 500 1000 1500 2000 2500 3000 3500 4000 bin EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 24 Unit Element versus Binary Weighted DAC Unit Element DAC Binary Weighted DAC σ D N L = σε σ DNL ≅ 2 B 2σ σ INL ≅ 2 B 2 −1 σ INL ≅ 2 B 2 −1 σ ε ε = 2σ INL σε Number of switched elements: S=B S = 2B Key point: Significant difference in performance and complexity! EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 25 Unit Element versus Binary Weighted DAC Example: B=10 Unit Element DAC Binary Weighted DAC σ DNL = σ ε σ DNL ≅ 2 2σ ε = 3 2σ ε σ INL ≅ 2 B 2 B −1 σ ε = 16σ ε σ INL ≅ 2 B 2 −1 σ ε = 16σ ε Number of switched elements: S = 2B = 1024 S = B = 10 Significant difference in performance and complexity! EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 26 DAC INL/DNL Summary • DAC architecture has significant impact on DNL • INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision • Results are for uncorrelated random element variations • Systematic errors and correlations are usually also important Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9. EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 27 Segmented DAC • Objective: Compromise between unit element and binary weighted DAC MSB (B1 bits) (B2 bits) … … LSB Unit Element Binary Weighted • • • • Approach: B1 MSB bits à unit elements B2 LSB bits à binary weighted VAnalog BTotal = B1+B2 INL: unaffected DNL: worst case occurs when LSB DAC turns off and one more MSB DAC element turns on- same as binary weighted DAC with B2+1 bits Number of switched elements: (2B1-1) + B2 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 28 Comparison Example: B = 12, B1 = 5, B1 = 6, B2 = 7 B2 = 6 MSB ( B2 +1) σ DNL ≅ 2 σ INL ≅ 2 B 2 LSB 2 σ ε = 2σ INL −1 σε S = 2B1 − 1 + B2 σε = 1% DAC Architecture Unit element (12+0) Binary weighted(0+12) Segmented (5+7) Segmented (6+6) σINL[LSB] σDNL[LSB] # of switched elements 0.32 0.32 0.32 0.32 0.01 0.64 0.16 0.113 4095 12 31+7=38 63+6=69 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 29 Practical Aspects Current-Switched DACs • • • • Unit element DACs ensure monotonicity by turning on equal-weighted current sources in succession Typically current switching performed by differential pairs Based on the code only one of the diff. pair devices are onà device mismatch not an issue Issue: While binary weighted DAC can use the incoming binary digital code directly, unit element requires a decoder à N to (2N-1) decoder Binary Thermometer 000 0000000 001 0000001 010 0000011 011 0000111 100 0001111 101 0011111 110 0111111 111 1111111 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 30 Segmented Current-Switched DAC • 4-bit MSB Unit element DAC + 4-bit binary weighted DAC • Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder • Digital code for both DACs stored in a register EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 31 Segmented Current-Switched DAC Cont’d • • • 4-bit MSB Unit element DAC + 4-bit binary weighted DAC Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder Digital code for both DACs stored in a register EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 32 Segmented Current-Switched DAC Cont’d • Domino Logic MSB Decoder à Domino logic à Example: D4,5,6,7=1 OUT=1 • Register à Latched NAND gate: à CTRL=1 OUT=INB IN Register EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 33 Segmented Current-Switched DAC Reference Current Considerations • Iref is referenced to VDD à Problem: Reference current varies with supply voltage EECS 247 Lecture 16: Data Converters + - © 2005 H.K. Page 34 Segmented Current-Switched DAC Reference Current Considerations • Iref is referenced to VssàGND + - EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 35 Segmented Current-Switched DAC Considerations • • Example: 2-bit MSB Unit element DAC + 3-bit binary weighted DAC To ensure monotonicity at the MSBà LSB transition: First OFF MSB current source is routed to LSB current generator EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 36 Dynamic DAC Error: Glitch • Ideal 10 DAC output depends on timing 5 0 Plot shows situation where – LSB/MSBs on time – LSB early, MSB late – LSB late, MSB early Early • Consider binary weighted DAC transition 011 à 100 10 1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3 5 0 10 Late • 5 0 Time EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 37 Glitch Energy • Glitch energy (worst case) proportional to: dt x 2B-1 dt à error in timing & 2B-1 associated with half of the switches changing state LSB energy proportional to: T=1/fs • Need dt x 2B-1 << T or dt << 2-B+1 T • Examples: • • fs [MHz] B dt [ps] 1 20 1000 12 16 10 << 488 << 1.5 << 2 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 38 DAC Reconstruction Filter B • Need for and requirements depend on application fs/2 DAC Input 1 0.5 0 0 0.5 1 1.5 2 2.5 sinc – Correct for sinc distortion – Remove “aliases” (stair-case approximation) x 10 0.5 0 DAC Output • Tasks: 3 6 1 0 0.5 1 1.5 2 2.5 3 6 1 x 10 0.5 0 0 0.5 1 1.5 Frequency EECS 247 Lecture 16: Data Converters 2 2.5 3 6 x 10 © 2005 H.K. Page 39 Reconstruction Filter Options D igital F ilter DAC SC Filter ZOH CT F ilter • Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2) • Digital filter – Bandlimits the input signal à prevent aliasin – Could also provide high-frequency pre-emphasis to compensate in-band sinc amplitude droop associated with the inherent DAC ZOH function EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 40 DAC Implementation Examples • Untrimmed segmented – T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983 – A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315 • Current copiers: – D. W. J. Groeneveld et al, “A Self-Calibration Techique for Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517 • Dynamic element matching: – R. J. van de Plassche, “Dynamic Element Matching for HighAccuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795 EECS 247 Lecture 16: Data Converters 8x8 array EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 41 2µ tech., 5Vsupply 6+2 segmented © 2005 H.K. Page 42 Two sources of systematic error: - Finite current source output resistance - Voltage drop due to finite ground bus resistance EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 43 Current-Switched DACs in CMOS I1 = k (VGSM 1 −Vth ) VGSM 2 = VGSM 1 − 3RI VGSM 3 = VGSM 1 − 5RI VGSM 4 = VGSM 1 − 6RI 2 Iout 3RI 2 I 2 = k (VG SM 2 −Vth ) = I1 1 − V G SM 1 −Vth 2I1 gmM 1 = VGSM 1 − Vth VDD 2 M1 I1 M2 I2 M3 I3 M4 I4 2 3RgmM 1 → I 2 = I1 1 − ≈ I1 (1 − 3RgmM 1 ) 2 2 5RgmM 1 → I3 = I1 1 − ≈ I1 (1 − 5RgmM 1 ) 2 2 6RgmM 1 → I 4 = I1 1 − ≈ I1 (1 − 6RgmM 1 ) 2 3RI 2RI RI Example: 4 unit element current sources •Assumption: RI is small compared to transistor gate overdrive à Desirable to have gm small EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 44 (5+5) More recent published DAC using symmetrical switching built in 0.35micron/3V EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 45 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 46 16bit DAC (6+10)- MSB DAC uses calibrated current sources I/2 Current Divider I/2 I EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 47 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 48 Current Divider Accuracy Id = d Id Id d Id Id = = I d1 + I d 2 2 I d1 − I d 2 I/2 I/2 M1 M2 I I/2+dId /2 M1 I/2-dId /2 M2 I Id d W L × + d Vth W VG S −Vt h L 2 Ideal Current Divider Real Current Divider M1& M2 mismatched àProblem: Device mismatch could severely limit DAC accuracy EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 49 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 50 Dynamic Element Matching During Φ2 During Φ1 I1(1) = 21 Io (1 + ∆1 ) I2(1) = 21 Io (1 − ∆1 ) I1( 2 ) = 21 Io (1 − ∆1 ) I2( 2 ) = 21 Io (1 + ∆1 ) Io/2 Io/2 I1 I2 fclk I (1) + I2( 2 ) I2 = 2 2 Io (1 − ∆1 ) + (1 + ∆1 ) = 2 2 I ≈ o f o r ∆1 s m a l l 2 / 2 error ∆1 Io EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 51 EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 52 Dynamic Element Matching During Φ2 During Φ1 I1(1) = 12 I o (1 + ∆1 ) I (1) 2 I1( 2 ) = 12 I o (1 − ∆1 ) = I o (1 − ∆1 ) 1 2 I I 3(1) = 12 I1(1) (1 + ∆ 2 ) ( 2) 2 = I o (1 + ∆1 ) 1 2 Io/4 I3 = I o (1 + ∆1 )(1 + ∆ 2 ) I4 I2 fclk I 3( 2 ) = 12 I1( 2 ) (1 − ∆ 2 ) / 2 error ∆2 = 14 I o (1 − ∆1 )(1 − ∆ 2 ) 1 4 Io/2 Io/4 I (1) + I 3( 2 ) I3 = 3 2 I o (1 + ∆1 )(1 + ∆ 2 ) + (1 − ∆1 )(1 − ∆ 2 ) = 2 4 I = o (1 + ∆1∆ 2 ) 4 I1 fclk E.g. ∆1 = ∆2 = 1% à matching error is (1%)2 = 0.01% EECS 247 Lecture 16: Data Converters / 2 error ∆1 Io © 2005 H.K. Page 53 Summary D/A Converter • D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL – Segmented- unit element MSB(B1)+ binary weighted LSB(B2)à complexity proportional (2B1-1) + B2 – DNL compromise between the two • Static performance • Dynamic performance • DAC improvement techniques – Component matching – Glitches – Symmetrical switching rather than sequential switching – Current source self calibration – Dynamic element matching EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 54 MOS Sampling Circuits EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 55 Re-Cap Analog Input Analog Preprocessing • How can we build circuits that "sample" A/D Conversion DSP Anti-Aliasing Filter Sampling +Quantization 000 ...001... 110 D/A Conversion "Bits to Staircase" Analog Post processing Reconstruction Filter Analog Output EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 56 Ideal Sampling φ1 • In an ideal world, zero resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C • Not realizable! vIN vOUT S1 C φ1 T=1/fS EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 57 Ideal T/H Sampling φ1 vIN vOUT S1 C φ1 T=1/fS • Vout tracks input when switch is closed • Grab exact value of Vin when switch opens • "Track and Hold" (T/H) (often called Sample & Hold!) EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 58 Ideal T/H Sampling time Continuous Time T/H signal (SD Signal) Clock DT Signal EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 59 Practical Sampling φ1 vIN vOUT M1 C • • • • • Switch induced noise power à kT/C Finite Rsw à limited bandwidth Rsw = f(Vin) à distortion Switch charge injection Clock jitter EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 60 kT/C Noise k BT ∆2 ≤ C 12 2B − 1 C ≥ 12k BT VFS 2 In high resolution ADCs kT/C noise usually dominates overall error (power dissipation considerations). B Cmin (VFS = 1V) 8 12 14 16 20 0.003 pF 0.8 pF 13 pF 206 pF 52,800 pF EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 61 Acquisition Bandwidth • The resistance R of switch S1 turns the sampling network into a lowpass filter with risetime = RC = τ • Assuming Vin is constant during the sampling period and C is initially discharged EECS 247 Lecture 16: Data Converters φ1 vIN vOUT R S1 C vout (t ) = vin (1 − e − t /τ ) © 2005 H.K. Page 62 Switch On-Resistance 1 Vin − Vout t = << ∆ 2 fs −1 Vin e 2 f sτ << ∆ Vin = VFS Worst Case: τ << − R << − φ1 vIN vOUT R S1 C 1 T 2 ln 2 B − 1 ( ) 1 1 2 f sC ln 2 B − 1 ( Example: B = 14, ) φ1 T=1/fS C = 13pF, fs = 100MHz T/τ >> 19.4, R << 40Ω EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 63 Switch On-Resistance I D ( triode ) = µCox RON = dI D ( triode ) 1 ≅ RON dVDS VDS →0 1 1 = W W µCox (VGS − Vth ) µCox (VDD − Vth − Vin ) L L for RON = W VDS VGS − VTH − VDS , L 2 Ro = µCox 1 W (VDD − Vth ) L Ro Vin 1− VDD − Vth EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 64 Sampling Distortion vout = T Vin − 1− 2τ VDD −Vt h vi n 1 − e 10bit ADC & T/τ = 10 VDD – Vth = 2V VFS = 1V EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 65 Sampling Distortion • SFDR is very sensitive to sampling distortion • Solutions: • Overdesignà Larger switches à increased switch charge injection • Complementary switch • Maximize VDD/VFS à decreased dynamic range • Constant VGS ? f(Vin) à … 10bit ADC T/τ = 20 VDD – Vth = 2V VFS = 1V EECS 247 Lecture 16: Data Converters © 2005 H.K. Page 66