Download Notes 1 6382 Introduction To Complex Variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ECE 6382
Fall 2016
David R. Jackson
Notes 1
Introduction to Complex Variables
Notes are from D. R. Wilton, Dept. of ECE
1
Some Applications of Complex Variables
 Phasor-domain analysis in physics and engineering
 Laplace and Fourier transforms
 Evaluation of integrals
 Asymptotics (method of steepest descent)
 Conformal Mapping (solution of Laplace’s equation)
 Radiation physics (branch cuts, poles)
2
Complex Arithmetic and Algebra
A complex number z may be thought of simply as an ordered pair
of real numbers (x, y) with rules for addition, multiplication, etc.
z  x  iy
 i ( j ) 
 r  cos   i sin 
i
 re
 r 

1, x  Re z , y  Im z


z   x, y 
(from figure)
(Euler formula (not yet proved!))
(polar form)
 z  arg z (polar form)
y
r
z
z

x
r  z  x 2  y 2  magnitude of z
y
  arg z  tan
 argument or phase of z
x
x  r cos  , y  r sin 
1
Argand diagram
3
Complex Arithmetic and Algebra (cont.)
y
Addition / subtraction :
z1  z2   x1  iy1    x2  iy2 
  x1  x2   i  y1  y2 
z1 - z2
Multiplication :
z1 z2   x1  iy1  x2  iy2 
-z2
y1
y2
z1 + z2
z1
1
x1
2
z2
x2
x
  x1 x2  y1 y2   i  x1 y2  x2 y1 
 i   0  i1 0  i1   1 
2
Division :
1

  0,1 0,1   1, 0 
1
x1  iy1 x2  iy2

x2  iy2 x2  iy2
x x  y y  i ( y1 x2  y2 x1 )
 1 2 1 22
x2  y22
z1 / z2 

2
Division is kind of messy in rectangular coordinates!

 x x  y y y x  y2 x1 
z1 / z2   1 22 12 2 , 1 22

2
x

y
x

y
2
2
2
 2

4
Complex Arithmetic and Algebra (cont.)
y
z
z
r
x
r

z*
Conjugation :
z *   x  iy 
z1 z2*
z1 z2*
Note : z1 / z2 

2
*
z2 z2
z2
Magnitude :
r z 
x2  y 2  z z* 
 re  re 
i
 i
5
Euler’s Formula
Recall :

x2 x3
xn
e  1 x   
 
2! 3!
n 0 n !
Define extension to complex variable ( x  z  x  iy ) :
x

z2 z3
e  1 z   
2! 3!
zn
 
n 0 n !
z

 e 
i
n 0
 i 
n
n!
 1
2
2!

(converges for all z )
4
4!


3 5
 i    
3! 5!




 cos   i sin 
 ei  cos   i sin 
e  i  cos   i sin 
More generally,

eiz  cos z  i sin z
e  iz  cos z  i sin z
eiz  e  iz
cos z 
2
eiz  e  iz
sin z 
2i
6
Application to Trigonometric Identities
Many trigonometric identities follow from a simple application of Euler's formula :
ei 2  cos 2  i sin 2
On the other hand,
ei 2   ei    cos   i sin    cos 2   sin 2   i  2 cos  sin  
2
2
Equating real and imaginary parts of the two expressions yields two identities :
cos 2  cos 2   sin 2 
sin 2  2 cos  sin 
e 1
i   2 
 cos 1   2   i sin 1   2 
On the other hand,
e 1
i   2 
 ei1 e  i2
  cos 1  i sin 1  cos  2  i sin  2 
  cos 1 cos  2 sin 1 sin  2   i  sin 1 cos  2  cos 1 sin  2 
Equating real and imaginary parts yields :
cos 1   2   cos 1 cos  2 sin 1 sin  2
sin 1   2   sin 1 cos  2  cos 1 sin  2
7
Application to Trigonometric Identities (cont.)
In general,
e
in
 
 cos n  i sin n  e
i n

 cos   i sin  
n
Expand using binomial theorem,
then equate real and imaginary parts
to obtain new identities.
eiz  cos z  i sin z
eiz  cos z  i sin z


eiz  eiz
eiz  e iz
cos z 
, sin z 
2
2i
e z  e z
e z  e z
cos  iz  
 cosh z , sin  iz   
 i sinh z
2
2i
8
DeMoivre’s Theorem
 
z n  rei
n
 r n ein  r n  cos n  i sin n   r n n
(DeMoivre's Theorem)
Note that for n an integer, the result is independent of how  is measured
 rei  2 k    r n ei n  2 kn   r n cos n   2 kn  i sin n   2 kn  (k an integer)









 r n  cos n  i sin n 
n
 zn
y
z
r
,
k  1
z
 ,k 0
x
, k  1
9
Roots of a Complex Number
z n   rei   r n ein  r n  cos n  i sin n   r n n (DeMoivre's Theorem)
n
Applies also for n not an integer, but in this case, the result
is not independent of how  is measured.
Example : n th root of a complex number :
1
zn
  re
1
i   2 k   n
 



1 i n  2 kn
r ne


1
rn


e.g.,  8i 

cos   2 k  i sin   2 k  , k  0,1, 2,
n
n
n
n 

1
1
3

n roots
i  i 2 k
 i 2 i 2 k  3
6
3  2 cos   
  8e

2
e

  6
 


 2 k   i sin     2 k   ,
3 
 6
3 
n 1
k  0,1, 2
 3
  
1
  
 2 cos     i sin      2 cos  30   i sin  30    2 
i  
2
 6 
  6
 2
   2 
  2  
 2 cos   

  i sin   
   2 cos  90   i sin  90  
6
3
6
3



 
   4 
  4  
 2 cos   

i
sin

 
 
6
3
6
3



 
2 cos  210   i sin  210  
3  i,
2i,
  3  i,
10
Roots of a Complex Number (cont.)
w  z1/3   8i 
1/3
y
z
 8i 
1
3
v
w
w  u  iv
 3  i,

  2i,

 3  i
x
u
8i
Im
1120
Note that the n th root of z can also be expressed in terms
of the n th root of unity :
1
n
z
  re

where
1
i  2 k   n
1
 

1
n
n th root
of unity

 e
i 2 k

1 i n 2 nk
n
r e

1 i
n
r en
e
i 2 kn
1  0
Re
1 240
Cube root
of unity
"principal" n th root
of unity
root of z

1
n
e
i 2 kn
 cos
2 k
2 k
 i sin
,
n
n
k  0,1,
,n 1
11
Related documents