Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
URBAN WATER DEMAND FORECASTING USING ARTIFICIAL NEURAL NETWORKS: A CASE STUDY OF BANGKOK. BY VICTOR SHINDE CONTENTS Need for water demand forecasting Description of ANN Study area description Results of the study Conclusions INTRODUCTION Need for water demand forecasting • Water is a finite resource. • Expanding the capacity of a water distribution system. • Improving the reliability of supply. • Effecting demand management instruments. • Procurement of investment. DESCRIPTION OF ANN Why use ANN? • Accounts for non linearity between inputs and outputs • Uses a universal function to convert inputs to output, for all types of problems. • More realistic forecasts. DESCRIPTION OF ANN A network which mimics the human brain. Connection links each having some weight ‘w’ O U T P U T I N P U T Input layer Hidden Layer Output layer x1 w1j w2j x2 j w3j x3 yj = f(x1w1j+x2w2j+x3w3j) f = Transfer function = (1/(1+e-t) DESCRIPTION OF ANN Network Training I N P U T Output Desired Output Compares Cost function E = Input layer Hidden Layer Output layer (Y o Yd ) 2 STUDY AREA DESCRIPTION Main study area Metropolitan Waterworks Authority (MWA) responsibility area – Bangkok Metropolis, Nontaburi & Samut Prakarn Secondary study areas Hanoi (Vietnam) and Chiang Mai (Thailand) STUDY AREA DESCRIPTION MWA responsibility area (2007 statistics) • Population : 7.86 Million • Population served: 7.36 Million (93.6%) • Average Daily production : 5.52 MCM • Non Revenue Water : 30.32 % Secondary study areas Hanoi Chiang Mai 0 Temperature ( C) Maximum Minimum Rainfall (mm) Population (Million) GDP (USD) 32 14 1682 3.4 40 Billion 31 19 1081 1.66 3.3 Billion OBJECTIVES OF THE STUDY Overall objective To develop ANN models to forecast the water demand for MWA – Bangkok. Specific objectives ● To forecast the short term and long term water demand for MWA. ● To identify the factors most crucial in determining the short term and long term water demands for MWA. ● To compare the factors influencing long term demand for Bangkok, Hanoi and Chiang Mai SCOPE OF THE STUDY Demand Short term (ST) demand Long term (LT) demand Data used ST Demand LT Demand – Daily demand, 1,2 & 3 days lead – Monthly demand, 1,2 & 6 months lead – Historical demand (sales), Rainfall, RH, Mean Temp – Historical demand (sales), Population, GPP, Household connections, Education status, Rainfall, RH, Max Temp For comparing the cities (Bangkok, Hanoi and Chiang Mai) – Same as LT Demand, only production in lieu of sales & Mean Temp instead of Max Temp Software used – ANN NeuroSolutions SCOPE OF THE STUDY Methodology for both ST and LT demand models Data Collection and Analysis • Correlation Matrix • Pruning & Construction Input Selection Model Training & Testing for 1st set Architectures • MLP • GFF • RBF Transfer functions • Hyperbolic tan • Sigmoid Learning Rules • Backward Descend • Conjugate Gradient Sensitivity analysis Omission of least sensitive variables Training & Testing for 2nd set 150 ST Models – 15 sets 88 LT Models – 6 sets 60 Comparison models RESULTS Short term demand, 1 day lead Input Selection : Zhang et al. (2006), Msiza et al. (2007) Water Sales Max Temp Min Temp Water Sales 1 0.38 0.55 Max Temp 0.38 1 0.78 Min Temp 0.55 0.78 1 Rainfall 0.39 -0.06 0.42 RH 0.31 0.19 0.7 Evaporation 0.36 0.94 0.79 Mean Temp 0.52 0.91 0.96 Rainfall 0.39 -0.06 0.42 1 0.85 -0.16 0.27 RH 0.31 0.19 0.7 0.85 1 0.17 0.54 Evaporation Mean Temp 0.36 0.52 0.94 0.91 0.79 0.96 -0.16 0.27 0.17 0.54 1 0.88 0.88 1 Selected Variables: Mean Temperature, Rainfall and RH RESULTS Observed vs. Predicted Demand for Training Set Demand (MCM) 3.9 3.7 3.5 Observed 3.3 Predicted 3.1 2.9 1 11 21 31 Exemplars Observed vs. Predicted Demand for Testing Set Demand (MCM) 4.1 3.9 3.7 Observed 3.5 Predicted 3.3 3.1 1 11 21 31 Exemplars 41 51 61 41 51 61 RESULTS Model Architecture Hidden Layers ST-1A(1) MLP 1 ST-1A(2) MLP 1 ST-1A(3) MLP 1 ST-1A(4) MLP 1 ST-1A(5) MLP 2 ST-1A(6) MLP 2 ST-1A(7) MLP 2 ST-1A(8) MLP 2 ST-1A(9) MLP 3 ST-1A(10) MLP 3 ST-1A(11) MLP 3 PE's 13 11 17 17 20 &15 21 &15 12&15 12&15 20,10&5 17,12 &8 17,12 &9 1 O Di AARE = i x100 N i 1 Oi N Transfer function tanh Sigmoid tanh Sigmoid tanh Sigmoid tanh Sigmoid tanh tanh Sigmoid Learning AARE RMSE Rule % MCM BD 1.19 0.054 BD 1.19 0.054 CG 1.18 0.052 CG 1.15 0.05 BD 1.15 0.051 BD 1.19 0.055 CG 1.19 0.054 CG 1.2 0.055 BD 1.12 0.05 CG 1.13 0.049 CG 1.15 0.052 1 RMSE = ( N N 2 ( O D ) i i ) i 1 (Threshold static)x = (n/N) x 100 0.50% 30.30 36.36 25.76 28.79 30.30 28.79 30.30 33.33 30.30 27.27 34.85 1 2 Threshold static 1% 2% 3% 4% 56.06 78.79 92.42 96.97 54.55 78.79 92.42 96.97 54.55 81.82 92.42 96.97 54.55 81.82 95.45 100 59.09 80.30 93.94 98.48 56.06 78.79 92.42 96.97 57.58 80.30 92.42 96.97 54.55 78.79 90.91 96.97 59.09 81.82 92.42 100 53.03 80.30 93.94 100 57.58 78.79 90.91 96.97 Zhang et al. (2008) Adamowski (2008) Ghiassi et al. (2007) Jain et al. (2000) 5% 100 100 100 100 100 100 100 100 100 100 100 RESULTS SA for ST-1A models Observed vs. Predicted Demand for Testing Set 0.12 3.85 3.65 3.55 0.08 3.45 0.06 Observed 0.04 3.35 Predicted 0.02 3.25 Demand (MCM) 0.10 3.75 3.65 3.55 Observed 3.45 Predicted 3.35 3.25 11 21 31 41 Testing Exemplars Model Architecture Hidden Layers ST-1B(12) MLP 1 ST-1B(13) MLP 1 ST-1B(14) MLP 1 ST-1B(15) MLP 1 ST-1B(16) MLP 2 ST-1B(17) MLP 2 ST-1B(18) MLP 2 ST-1B(19) MLP 2 51 61 PE's Transfer function 18 tanh 16 Sigmoid 14 tanh 13 Sigmoid 12&8 tanh 12&8 Sigmoid 12&8 tanh 12&8 Sigmoid RH 1 Rainfall 3.15 Mean Temp 0.00 HWD Standard Deviation(MCM) Demand (MCM) Observed vs. Predicted Demand for ST-1B(16) 3.15 1 11 21 31 41 51 61 Exemplars Learning AARE RMSE Rule % MCM BD 1.23 0.056 BD 1.17 0.055 CG 1.26 0.057 CG 1.2 0.054 BD 1.17 0.053 BD 1.22 0.056 CG 1.23 0.056 CG 1.21 0.056 0.50% 31.82 34.85 27.27 28.79 33.33 31.82 30.30 33.33 Input Variables: HWD, Mean Temp & Rainfall 1% 54.55 60.61 53.03 54.55 59.09 57.58 54.55 56.06 Threshold static 2% 3% 78.79 90.91 80.30 92.42 80.30 90.91 77.27 90.91 78.79 90.91 78.79 90.91 80.30 92.42 78.79 93.94 4% 96.97 96.97 96.97 96.97 96.97 96.97 96.97 96.97 5% 98.48 98.48 100 100 100 98.48 98.48 100 RESULTS Input Variables: Only HWD Model Architecture Hidden Layers ST-1C(20) MLP 1 ST-1C(21) MLP 1 ST-1C(22) MLP 1 ST-1C(23) MLP 1 ST-1C(24) MLP 2 ST-1C(25) MLP 2 ST-1C(26) MLP 2 ST-1C(27) MLP 2 PE's Transfer function 42 tanh 42 Sigmoid 40 tanh 42 Sigmoid 15&12 tanh 15&12 Sigmoid 15&12 tanh 15&12 Sigmoid Learning AARE Rule % BD 1.31 BD 1.27 CG 1.32 CG 1.34 BD 1.29 BD 1.26 CG 1.29 CG 1.28 RMSE MCM 0.058 0.057 0.058 0.059 0.058 0.056 0.058 0.058 0.50% 23.96 29.17 21.88 26.04 28.13 25.00 27.08 29.17 1% 48.96 55.21 48.96 46.88 50.00 56.25 50.00 52.08 Threshold static 2% 3% 78.13 91.67 78.13 91.67 80.21 91.67 77.08 91.67 77.08 92.71 78.13 91.67 78.13 91.67 77.08 91.67 4% 96.88 96.88 96.88 96.88 96.88 97.92 96.88 96.88 5% 98.96 100 100 98.96 100 100 100 100 Input Variables: HWD -1, HWD -2. Model Architecture Hidden Layers ST-1D(29) MLP 1 ST-1D(30) MLP 1 ST-1D(31) MLP 1 ST-1D(32) MLP 1 ST-1D(33) MLP 2 ST-1D(34) MLP 2 ST-1D(35) MLP 2 ST-1D(36) MLP 2 PE's Transfer function 24 tanh 28 Sigmoid 28 tanh 28 Sigmoid 15&11 tanh 16 &12 Sigmoid 16 &12 tanh 15&12 Sigmoid Learning AARE RMSE Rule % MCM BD 1.33 0.058 BD 1.24 0.056 CG 1.32 0.057 CG 1.35 0.059 BD 1.32 0.059 BD 1.26 0.057 CG 1.35 0.06 CG 1.36 0.06 0.50% 23.40 25.53 23.40 24.47 27.66 30.85 23.40 24.47 1% 46.81 52.13 47.87 46.81 50.00 54.26 47.87 47.87 Threshold static 2% 3% 76.60 91.49 77.66 89.36 77.66 91.49 76.60 92.55 75.53 93.62 77.66 89.36 77.66 91.49 76.60 91.49 4% 96.81 97.87 96.81 96.81 96.81 96.81 96.81 96.81 5% 98.94 100 100 98.94 100 100 98.94 98.94 RESULTS Input Variables: HWD -1, HWD -2 & HWD -3. Model Architecture Hidden Layers ST-1E(37) MLP 1 ST-1E(38) MLP 1 ST-1E(39) MLP 1 ST-1E(40) MLP 1 ST-1E(41) MLP 2 ST-1E(42) MLP 2 PE's Transfer function 21 tanh 21 Sigmoid 19 tanh 21 Sigmoid 16 &12 tanh 16 &12 Sigmoid Learning AARE RMSE Threshold static Rule % MCM 0.50% 1% 2% 3% 4% 5% BD 1.28 0.056 23.08 48.35 79.12 93.41 97.80 98.90 BD 1.24 0.055 27.47 56.04 75.82 90.11 97.80 98.90 CG 1.29 0.057 28.57 48.35 79.12 92.31 97.80 98.90 CG 1.26 0.055 25.27 48.35 81.32 93.41 97.80 100 BD 1.28 0.057 26.37 47.25 78.02 92.31 97.80 98.90 BD 1.22 0.055 29.67 53.85 79.12 90.11 96.70 100 Input Variables: HWD -1 through HWD -7 Model Architecture Hidden Layers ST-1F(43) MLP 1 ST-1F(44) MLP 1 ST-1F(45) MLP 2 ST-1F(46) MLP 2 PE's Transfer function 10 tanh 9 Sigmoid 16&11 tanh 18&12 Sigmoid Learning AARE RMSE Threshold static Rule % MCM 0.50% 1% 2% 3% 4% BD 1.27 0.056 23.26 50.00 79.07 93.02 97.67 BD 1.26 0.055 24.42 55.81 77.91 93.02 98.84 BD 1.31 0.057 19.77 47.67 76.74 91.86 97.67 BD 1.22 0.055 30.23 53.49 81.40 91.86 97.67 5% 100 100 100 100 Master model for seven consecutive day forecast Input variables: HWD, Rainfall, Mean Temperature & RH Model Architecture Hidden Layers PE's Transfer Learning function Rule MM-1 MLP 1 10 tanh BD MM-2 MLP 1 8 Sigmoid BD MM-3 MLP 1 14 tanh CG MM-4 MLP 1 8 Sigmoid CG MM-5 MLP 2 9&7 tanh BD MM-6 MLP 2 8&7 Sigmoid BD MM-7 MLP 2 10 & 7 tanh CG MM-8 MLP 2 8&7 Sigmoid CG Date Observed Demand MCM 28-Jun-08 29-Jun-08 30-Jun-08 1-Jul-08 2-Jul-08 3-Jul-08 4-Jul-08 3.502 3.481 3.433 3.410 3.391 3.413 3.471 13-Aug-08 14-Aug-08 15-Aug-08 16-Aug-08 17-Aug-08 18-Aug-08 19-Aug-08 3.406 3.416 3.425 3.410 3.388 3.371 3.391 20-Jul-08 21-Jul-08 22-Jul-08 23-Jul-08 24-Jul-08 25-Jul-08 26-Jul-08 3.450 3.432 3.450 3.425 3.460 3.510 3.452 Forecasted Demand MCM TEST 3.508 3.489 3.475 3.434 3.431 3.426 3.431 TEST 3.333 3.334 3.332 3.358 3.358 3.349 3.352 TEST 3.320 3.323 3.321 3.359 3.357 3.345 3.347 AARE RMSE AARE RMSE AARE RMSE AARE RMSE AARE RMSE AARE RMSE AARE RMSE AARE RMSE ARE Error for seven consecutively forecasted seven days D+1 D+2 D+3 D+4 D+5 D+6 D+7 Average 1.32 1.66 1.87 2.00 1.97 2.02 1.96 1.83 0.058 0.076 0.083 0.084 0.086 0.086 0.081 0.08 1.29 1.64 1.87 2.03 1.98 2.05 2.01 1.84 0.059 0.076 0.084 0.086 0.087 0.087 0.083 0.080 1.31 1.65 1.88 2.04 2.02 2.08 2.04 1.86 0.058 0.076 0.084 0.085 0.088 0.088 0.085 0.080 1.32 1.65 1.89 2.03 2.00 2.07 2.04 1.86 0.059 0.076 0.085 0.085 0.088 0.087 0.085 0.081 1.17 1.52 1.80 1.83 1.82 1.83 1.85 1.69 0.053 0.068 0.078 0.076 0.076 0.077 0.076 0.072 1.30 1.61 1.84 1.97 1.95 2.03 1.99 1.81 0.059 0.075 0.082 0.083 0.085 0.086 0.082 0.079 1.33 1.63 1.87 2.06 2.01 2.03 1.96 1.84 0.058 0.075 0.083 0.086 0.088 0.086 0.081 0.080 1.32 1.64 1.87 2.01 1.99 2.04 2.03 1.84 0.060 0.076 0.084 0.084 0.087 0.086 0.084 0.080 Avg ARE % % SAMPLE - 1 0.17 0.22 1.22 0.72 0.72 1.16 0.37 1.17 SAMPLE - 2 2.15 2.39 2.72 1.64 1.51 0.90 0.64 1.16 SAMPLE - 2 3.79 3.20 3.74 3.34 1.92 2.99 4.70 3.04 RMSE Avg RMSE MCM MCM 0.006 0.008 0.042 0.025 0.039 0.013 0.041 0.025 0.073 0.082 0.093 0.051 0.030 0.022 0.039 0.056 0.131 0.110 0.129 0.066 0.104 0.165 0.105 0.116 RESULTS Best fit models for Short term Demand Lead Period Input variables Architecture • MLP - 3 layers HWD, Rainfall, • tanh transfer function 1 day Mean Temp, RH • 20, 10 & 5 PE's • Back Descend Rule • MLP - 2 layers • Sigmoid transfer function 2 day HWD-1, HWD-2 • 16 & 10 PE's • Back Descend Rule • MLP - 2 layers • tanh transfer function 3 day HWD-1 • 13 & 6 PE's • Back Descend Rule • MLP - 3 layers HWD, Rainfall, • tanh transfer function 7 day consecutive Mean Temp, RH • 8, 7 & 7 PE's • Backward Descend Rule Accuracy 98.88% 98.53% 98.35% 98.51% RESULTS Best fit models for Long term Demand Lead Period 1 month 2 month 6 month Input variables Population, GPP, Education status, Household connections HWD, Rainfall, Max Temp Population, GPP, Education status, Household connections HWD, Rainfall, RH Population, GPP, Education status, Household connections HWD, Rainfall, Max Temp Architecture Accuracy • MLP - 3 layers • Sigmoid transfer function 98.88% • 20, 10 & 8 PE's • Conjugate Gradient Rule • GFF - 1 layer • tanh transfer function 98.53% • 11 PE's • Conjugate Gradient Rule • MLP - 1 layer • tanh transfer function 98.35% • 10 PE's • Backward Descend Rule RESULTS Factors influencing ST & LT Demand Sensitivity Analysis • Standardize all data Y= xx x & σ are the mean and standard deviation • Thus a standardized value of ‘zero’ represents the mean of the sample • Increases and decreases the input variables between the standardized -1 and +1 • Presents the trend of change in the demand. RESULTS Factors influencing ST & LT Demand RH Rainfall RH Rainfall Mean Temp 0.00 0.0 Max Temp 0.02 0.5 Household Connections 0.04 1.0 Education Status 0.06 1.5 Population 0.08 2.0 GPP 0.10 2.5 HWD Standard Deviation (MCM) Sensitivity indices for LT Demand 0.12 HWD Standard Deviation(MCM) Sensitivity indices for ST-Demand RESULTS Demand models for Bangkok, Hanoi & Chiang Mai 20 models prepared for each city using MLP & GFF Input Variables: Population, GPP, Household connections, Education status, HWD, Rainfall, Max Temperature, RH Best fit model results, AARE • Bangkok – 1.06% • Hanoi – 2.18 % • Chiang Mai – 1.26% Sensitivity analysis to determine influencing variables RESULTS Bangkok Hanoi RH Rainfall Mean Temp Households Education Population Chiang Mai GPP 7 6 5 4 3 2 1 0 Sensitivity indices of Input parameters for best models of the three study areas HWD Percentage change in Demand Demand models for Bangkok, Hanoi & Chiang Mai CONCLUSIONS ANN can provide the MWA with a powerful instrument to forecast the demands. Forecasting accuracy will be over 98% for both ST & LT. Advantages for MWA • Schedule pumping operations • Reduce detention time to improve water quality • Monthly revenues can be estimated upto 6 months in advance • Diversions, Basin transfers can be planned in dry years Factors Influencing MWA sales demand ST Demand : Historical water demand LT Demand : Education status & Household connections Comparison of factors influencing production demands of Bangkok, Hanoi and Chiang Mai Bangkok : HH connections, GPP and Education Hanoi : Education status, Mean Temperature and Population Chiang Mai : HH connections, Mean Temperature & Rainfall (This information could prove vital for goverments, international agencies and funding organizations)