# Download Constants and equations for final exam. You may detach this...

Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Physics 123
Final Exam
May 8, 2007, Tuesday
8:30 to 10:30 am
Constants and equations for final exam. You may detach this page if you wish.
Speed of light in vacuum c = 3.00 x 108 m/s
Planck's constant h = 6.63 x 10-34 Js = 4.14 x 10-15 eV s
Electron mass me = 9.11 x 10-31 kg=0.511 MeV/c2
Electron charge e = -1.60 x 10-19 C
1 nm = 10-9 m
1 eV = 1.60 x 10-19 J
1 MeV = 106 eV
Ionization energy of hydrogen= 13.6 eV
hc = 1240 eV  nm
h  h / 2  1.055  10 34 J  s  0.66  10 15 eV  s
Geometric Optics Sign convention
Positive
concave
converging
always
always
real
upright
upright
Focal distance for mirrors, f
Focal distance for lenses, f
Distance to object, do
Object height, ho
Distance to image, di
Image height, hi
Magnification, m
Negative
convex
diverging
never
never
virtual
inverted
inverted
 Mirror equation, lens equation
Magnification:
1
1
1


d0 di
f
m
 Focal distance for mirrors: f=r/2,
Waves v=f;
D=D0sin(kx-t+),
hi
d
 i
h0
do
Lens power: P=1/f, f – in m, P in diopter (D= m-1)
k=,
f,
f=1/T
For a wave traveling from a source in 3D: Intensity I1 /I2 =r22/r1 2, Amplitude D1/D2 =r2/r1
Sound level in decibels =10log(I/I0), I0=10-12W/m2
Doppler effect: f’=f/(1-vs/v)
Light as EM wave:
Law of reflection: i= r
c=f
Index of refraction: n=c/v
Total internal reflection: n1 sin1>n2
Snell’s law: n1 sin1=n2 sin 2
Wave reflection: shift in phase by  if n1<n2, no shift if n1>n2
Wave in medium:
Phase shift over extra path =2l/,
n=/n
Young’s experiment: extra path l=dsin
Constructive interference if relative phase =2m
m=0,1,2,3,4…
Rayleigh criterion for angular resolution =1.22/D
Half-width of the first diffractive maximum sin=/D
1
destructive if =2 (m+1/2)
Special relativity:
t0
t 
,
1 v2 / c2
m0c 2
E
,
1 v2 / c2
ΔL  L0 1  v 2 / c 2
m0v
p
KE  E  m0c 2 ,
1 v2 / c2
E 2  p 2c 2  m0 c 4
2
Particles and waves
Photons: E= hf = hc/, p= h/,
Photoelectric effect: E = W0+ KE
DeBroglie waves of matter (electrons, tennis balls, ...) = h/(mv)=h/p
Electrons (non-relativistic case): KEe = mev2/2
Compton effect (relativistic electron!): E  E ' K e ,  '   

 
h
(1  cos  ) , p  p ' p e
mc
Quantum mechanics
xp x  h
h 2 d 2
Heisenberg uncertainty principle

U
(
x
)


E

tE  h
2m dx 2
2
2
h k n
n2h2
2
En 

k n  p / h  n / L ;
Particle in a box:  n 
sin k n x ;
2m
8mL2
L
2m(U 0  E )
Tunneling probability T=exp(-2GL),
G
h 2
Wave function: probability to find in dV: |  | 2 dV , normalization – integral over all space  |  | 2 dV  1

Schrödinger equation:
Hydrogen-like ion (nucleus charge Z):
 Z 2e4m 1 
E n   2 2 2 
 8 0 h n 
2
Hydrogen atom: En = -(13.6 eV)/n ,
 100 
1
r
3
0
h 2 0
1
 0.529  10 10 m
2
Z
Zme
e r / r0 ;  200 
1
32r
3
0
(2  r / r0 )e r / 2 r0
Pr  4r 2 |  | 2
Complex atoms:
n=1,2,3,…
l  0,1,2,3,...(n  1)
ml  l;(l  1);(l  2),...0
Electron shells
s: l=0
p: l=1
3s2 means “2 electrons on n=3 level with l=0 ”
Maximum number of states: 2n2 electrons on nth level;
Some trigonometry:
Cos(2x)=Cos2x-Sin2x
2Sin2x= 1-Cos(2x)
Sin(2x)=2Cos(x)Sin(x)
2Cos2x=1+Cos(2x)
d: l=2
2
f: l=3
2(2l+1) electrons on nth level on lth shell
d(Cos(x))/dx= - Sin(x)
d(Sin(x))/dx= Cos(x)
Sin(a+b)=Sin(a)Cos(b)+Cos(a)Sin(b)
ms  1 / 2
Related documents