Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Find the largest open intervals where the function is concave upward. Answer the question. 17) The given graph is that of the derivative of a function f. Using information obtained from 2 the graph of f' and the fact that f(-1) = - and 3 1) f(x) = x4 - 8x2 2) f(x) = 4x3 - 45x2 + 150x f(1) = 3) f(x) = x2 + 2x + 1 2 , sketch the graph of f. Explain how 3 you obtained the graph of f. 4) f(x) = x3 - 3x2 - 4x + 5 6 y Decide if the given value of x is a critical number for f, and if so, decide whether the point for x on f is a relative minimum, relative maximum, or neither. 1 5) f(x) = x2 - x - 6; x = 2 6x -6 1 6) f(x) = (x2 - 6)(2x - 3); x = 2 -6 Find f"(x) for the function. 7) f(x) = 7x2 + 4x - 2 8) f(x) = 6 y 3x - 7 9) f(x) = 8x3 - 2x2 + 7 6x -6 10) f(x) = 2x3/2 - 6x1/2 11) f(x) = 4x4 - 8x2 + 7 -6 12) f(x) = 5e-x2 Sketch a graph of a single function that has these properties. Find the indicated derivative of the function. 13) f′′′ (x) of f(x) = 6x3 + 2x2 - 2x 14) f′′′ (x) of f(x) = 18) a) Continuous and differentiable for all real numbers b) f′(x) > 0 on (-3 , -1) and ( 2 , ∞) c) f′(x) < 0 on (-∞, -3) and ( -1 , 2) d) f′′ (x) > 0 on (-∞ , -2) and ( 1 , ∞) e) f′′ (x) < 0 on (-2 , 1) f) f′(-3) = f′(-1) = f′(2) = 0 g) f′′ (x) = 0 at (-2 , 0) and (1, 1) x x+1 Find the requested value of the second derivative of the function. 15) f(x) = 8e-x2 ; Find f′′ (2) . 16) f(x) = ln x ; 2x Find f′′ (1). 1 Solve the problem. 19) a) Continuous and differentiable for all real numbers b) f′(x) < 0 on (-∞ , -3 ) and ( 3 , ∞) c) f′(x) > 0 on (-3 , 3) d) f′′ (x) > 0 on (-∞ , 0 ) e) f′′ (x) < 0 on ( 0 , ∞) f) f′(-3) = f′(3) = 0 g) An inflection point at (0,0) 26) A rectangular field is to be enclosed on four sides with a fence. Fencing costs $7 per foot for two opposite sides, and $8 per foot for the other two sides. Find the dimensions of the field of area 670 ft2 that would be the cheapest to enclose. 27) Find the dimensions of the rectangular field of maximum area that can be made from 500 m of fencing material. 28) Find the dimensions that produce the maximum floor area for a one-story house that is rectangular in shape and has a perimeter of 155 ft. Find the integral. 20) a) Continuous for all real numbers b) Differentiable everywhere except x = 0 c) f′(x) < 0 on (-∞ , 0) d) f′(x) > 0 on ( 0 , ∞) e) f′′ (x) < 0 on (-∞ , 0) and (0, ∞) f) f(-2) = f (2) = 5 g) y-intercept and x-intercept at (0,0) Find the location of the indicated absolute extremum within the specified domain. 21) Minimum of f(x) = (x2 + 4)2/3; [-2, 2] 22) Minimum of f(x) = 23) Minimum of f(x) = 24) Maximum of f(x) = 3 29) ∫7 30) ∫ 31) ∫ 9x-5 dx 32) ∫ 12x3 33) ∫ 4x2/3 dx 34) ∫ (5x2 - 8x) dx 35) ∫ 36) ∫ 37) ∫ (3x8 - 7x3 + 5) dx 38) ∫ (9x-5 - 3x-1 ) dx 39) ∫ x2(3x + x-3) dx 1 ; [-4, 1] x+2 1 3 x - 2x2 + 3x - 4; [-2, 5] 3 x+3 ; [-4, 4] x-3 x 34 dx x2 x dx 5 4 dx x x2 3 x-5 dx x2 25) Minimum of f(x) = x3 - 3x2 ; [0, 4] 2 40) ∫ 8e4y dy 41) ∫ (t3 + e3t) dt 42) ∫ 43) ∫ 9z 3z2 - 7 dz 44) ∫ x 45) ∫ (x6 - 2x5)4(6x5 - 10x4) dx 46) ∫ 5x4 dx (5 + x5 )3 47) ∫ x9 dx ex10 48) ∫ 5e1/y dy 3y2 49) ∫ 6e4x dx 50) ∫ 3e z dz 8 z 51) ∫ ex dx ex + e 52) ∫ te-7t2 dt 53) ∫ 11x2e-4x3 dx 54) ∫ (1 - 6x)e3x-9x2 dx 55) ∫ 56) 8 dy (y - 9)3 (7x2 + 3)5 1 x(ln x3 ) dx dx 3 ∫ ln x7 dx x Answer Key Testname: 1325-PT4 19) 1) (-∞, - 2 3/3), (2 3/3, ∞) 15 2) ,∞ 4 (-∞, ∞) (1, ∞) Critical number, minimum at (1/2, -25/4) Not a critical number 14 9 8) 4(3x - 7)3/2 3) 4) 5) 6) 7) 20) 9) 48x - 4 10) 1.5x-1/2 + 1.5x-3/2 11) 48x2 - 16 12) 20x2 e-x2 - 10e-x2 13) 36 14) 6(x + 1)-4 15) 112e-4 16) - x=0 No minimum x = -2 No maximum x=2 27.7 ft @ $7 by 24.2 ft @ $8 125 m by 125 m 38.75 ft × 38.75 ft 21 4/3 29) x 4 21) 22) 23) 24) 25) 26) 27) 28) 3 8 17) Graphs and explanations will vary to some degree. The graph of f should look similar to the following. 6 y 30) 31) - 6x -6 -6 9 4x4 +C 32) 8 9/2 x +C 3 33) 12 5/3 x +C 5 34) 5 3 x - 4x2 + C 3 18) 35) - 5 - 8 x+C x 36) - 6 5 + +C x x 37) 1 9 7 4 x - x + 5x + C 3 4 38) 39) 4 34 +C x 9 -4 x - 3 ln x + C 4 3 4 x + ln x + C 4 Answer Key Testname: 1325-PT4 40) 2e4y + C t4 e3t 41) + +C 4 3 42) -4 (y - 9)2 +C 43) (3z2 - 7)3/2 + C 44) -1 +C 56(7x2 + 3)4 45) 1 6 (x - 2x5 )5 + C 5 46) 47) - 48) - 1 2(5 + x5 )2 1 10ex10 +C +C 5e1/y +C 3 49) 3 4x e +C 2 50) 3 e z+C 4 51) ln(ex + e) + C 52) - 1 -7t2 e +C 14 53) - 11 -4x3 e +C 12 54) 1 3x-9x2 e +C 3 55) 1 ln ln x3 + C 3 56) 1 (ln x7)2 + C 14 5