Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Hugo Kubinyi, www.kubinyi.de Structure-Based Ligand Design Hugo Kubinyi Germany E-Mail [email protected] HomePage www.kubinyi.de Hugo Kubinyi, www.kubinyi.de A. Cressy Morrison Man in a Chemical World Medicinal Chemist The Service of Chemical Industry Ch. Scribner‘s Sons, NY, 1937 Modeller „Chemical Industry, Upheld by Pure Science, Sustains the Production of Man‘s Necessities“ Hugo Kubinyi, www.kubinyi.de Strategies in Drug Design no protein 3D structure, no ligands combichem, HTS, virtual screening no protein 3D structure, ligands LBLD pharmacophores, (3D) similarity, (3D) QSAR Hugo Kubinyi, www.kubinyi.de Protein Crystallography protein 3D structure, no ligands de novo design (protein flexibility !) protein 3D structure, ligands structure-based design SBLD Hugo Kubinyi, www.kubinyi.de Crystallisation Techniques protein solution protein bulk solution solvens protein solution protein solution C° solvens vapour diffusion gel dialysis membrane microdialysis cocrystallisation batch cooling soaking precipitant protein ligand (weeks) mother liquour with ligand crystal (days) Hugo Kubinyi, www.kubinyi.de Thrombin and Thrombin Inhibitor Complexes Thrombin-Thrombstop Complex Hugo Kubinyi, www.kubinyi.de Number of Protein 3D Structures in the PDB total number of 3D structures (including NMR structures) n = 33,585 (November 05, 2005) number of protein X-ray structures: n = 27,797 Hugo Kubinyi, www.kubinyi.de Protein Domain Superfold Families α/β β doubly wound 2FOX - flavodoxin TIM barrel 7TIM α/β β sandwich 1APS - hydrolase α up-down 256B cytochrome globin 1THB - hemoglobin jelly roll 2STV - virus trefoil 1I1B - IL-1β β greek key - Ig 2RHE - Bence Jones αβ roll Hugo Kubinyi, www.kubinyi.de new folds (% of new 3D structures) Proportion of New Protein Folds / Year Hugo Kubinyi, www.kubinyi.de Binding Site Recognition a) coat the surface with water b) remove surfaceexposed water c) accrete new water molecules d) filter e) repeat process f) identify „active site points“ (PASS algorithm, G. P. Brady Jr., JCICS 14, 383-401 (2002)) R. C. Willis, Mod. Drug Discov., Sept. 2002, 28-34. Hugo Kubinyi, www.kubinyi.de The Problem of Protein 3D Structure Resolution Hugo Kubinyi, www.kubinyi.de Problems of PDB Protein 3D Structures Binding site geometry may be different in free protein and complex Lacking hydrogen atoms, orientation of hydroxyl groups can be added automatically Protonation of acidic and basic side chains Amino acid pKa values: pKa shifts? His: protonation equilibrium HN HN N + NH N NH No differentiation between C, O and N rotamer equilibria of his, thr, asn, gln Me N H OH O HO N H Me O O NH 2 H2N O Hugo Kubinyi, www.kubinyi.de HIV Protease, without a ligand HIV Protease, with a ligand Hugo Kubinyi, www.kubinyi.de Flexibility of the Binding Site of Cruzain a) Glu 205 flexibility, induced by Phe (gray) and Arg (blue) inhibitors b) Interactions of an Arg inhibitor with Glu 205 and a C-terminal Gly 212‘ S. A. Gillmor et al., Protein Sci. 6, 1603-1611 (1997) Hugo Kubinyi, www.kubinyi.de RELIBASE - Comparison of MTX Binding Sites www.ccdc.cam.ac.uk/prods/relibase/index.html Hugo Kubinyi, www.kubinyi.de RELIBASE - Benzamidine / COO- Interactions www.ccdc.cam.ac.uk/prods/relibase/index.html Hugo Kubinyi, www.kubinyi.de RELIBASE Binding Site Flexibility white: e.g. 1BR6 blue: 1IFS and 1APG red: ligand-free structures 2AII, 1RTC and 1IFT yellow: R180H mutants 1OBS and 1OBT J. Günther et al., J. Mol. Biol. 326, 621-636 (2003) Hugo Kubinyi, www.kubinyi.de Structure-based Design of Protein Ligands ß2-1 ß2-His 2 ß2-His 143 O O P O O ß1- His 143 2,3-DPG reduces the oxygen affinity of hemoglobin O O P -O ß1-His 2 O ß1-1 O - O ß1- Lys 82 ß2-His 143 H ß2-1-N ß2-His 2 SO3- -O S 3 ß1-His 143 COO - N- ß1-1 H ß1-Lys 82 ß1-His 2 Hugo Kubinyi, www.kubinyi.de Design of Dihydrofolate NH Arg 57 Reductase (DHFR) H H N + N Ligands H H N N H + N H O O- H O O N H N N H O O O H N CH3 N α -carboxylate O O- γ -carboxylate methotrexate (MTX) Hugo Kubinyi, www.kubinyi.de Design of Dihydrofolate Reductase (DHFR) Ligands R CH3 O O H N H OR N H N H + N H O O- OMe OMe trimethoprim, R = CH3 CH2COOH (CH2)2COOH Ki [nM] 1.3 2.6 0.37 (CH2)3COOH (CH2)4COOH 0.035 (CH2)5COOH (CH2)6COOH 0.024 0.066 0.050 Hugo Kubinyi, www.kubinyi.de Design of DHFR Ligands Hugo Kubinyi, www.kubinyi.de General Strategies for the Rational Design of Protease Inhibitors a) Exchange of the scissile bond in the substrate („substrate-like“aspartyl protease inhibitors) b) Introduction of a group that interacts with a metal ion („carboxy-terminal“ metalloprotease inhibitors) c) Introduction of a group that covalently interacts with the catalytic amino acid („amino-terminal“ serine and cysteine protease inhibitors) Strong non-covalent interactions with the binding site pockets (especially hydrophobic interactions) Hugo Kubinyi, www.kubinyi.de Relative Potency of Zn++-Complexing Groups OH R Ki [nM] O R=H 6200 CH 2COOH 450 CH 2S(=NH)2CH3 250 OP(=O)(OH)2 140 CH 2SH 11 Hugo Kubinyi, www.kubinyi.de Structure-Based Design of Captopril Carboxypeptidase Zn2+ { Zn2+ O H N N H R O O + NH2 O H2N substrate O IC50 = 330 µM HO + NH2 O N H inhibitor H2 N N H CH3 N HOOC O HS COOH N O Captopril COOH IC50 = 23 nM Hugo Kubinyi, www.kubinyi.de Captopril Analogs HS N O H3C S N COOEt IC50 = 17 µ M H N HS O O COOH IC50 = 4300 µ M HS COOH COOH IC50 = 1100 µ M IC50 = 2.8 µ M Free thiol and carboxylate groups are required for binding. Esterification of the carboxylate group reduces the binding affinity by nearly two orders of magnitude. S-methylation leads to a 20,000-fold reduction in binding affinities. Also the central carbonyl group seems to be essential for high binding affinity (lower right analog). Hugo Kubinyi, www.kubinyi.de Structure-Based Design of Dorzolamide H3C Ki = 300 nM O S Methazolamide N N NH2 H3C N S O O H3C S NH2 O O CH3 CH3 NH2 HN O O S HN CH3 Ki = 100 µM F3C S NH2 S O O S S NH2 O O H3C S O O S S O O O O Ki = 2.0 nM MK 927 Ki = 0.7 nM NH2 Dorzolamide Ki = 0.37 nM Hugo Kubinyi, www.kubinyi.de Binding Mode of Carbonic Anhydrase Inhibitors Thr 199 N H CH3 O H HN H O S N2+ O Zn S S O O Dorzolamide, anion Gln 92 H K i = 0.37 nM N H O H3 C CH3SO2NH2, Ki = 100 µM, CF3SO2NH2, Ki = 2 nM, pKa = 10.5 pKa = 5.8 Hugo Kubinyi, www.kubinyi.de Design of HIV Protease Inhibitors H 2N H O O N H N N H O Saquinavir H OH H N Phe OH H N HO CONH-t-Bu CH3 O Nelfinavir OH H N N N CONH-t-Bu H3C O Ritonavir H3C N H 3C S N CH3 N H OH Phe NH2 O O Indinavir O HN O S N O Phe O CH3 H N O CONH-t-Bu S Phe N H N OH Phe N H O OH S N Amprenavir O Hugo Kubinyi, www.kubinyi.de Design of HIV Protease Inhibitors NH2 H O O N OH H N N H H N O CONH-t-Bu Phe Saquinavir H OH H N HO H N CH3 O S Nelfinavir CONH-t-Bu Phe Hugo Kubinyi, www.kubinyi.de HIV Protease Inhibitors Against Resistant Strains H3C O H3C N H3C S N CH3 H3 C O Ritonavir HN Lopinavir N H CH3 Phe O H N O CH3 OH Phe H N N O OH Phe N H S O N Phe O N H O therapeutically applied in combination: lopinavir is active against ritonavir-resistant strains; its pharmacokinetics is improved by the CYP 3A4 inhibitor ritonavir. Hugo Kubinyi, www.kubinyi.de Success Stories and Failures of Structure-based Design OH HO phospholipase inhibitor HO CH3 CH2 OH N O HIV protease inhibitor MeO O O O S N H N N OH COOH O HO O OH AcNH N H thrombin inhibitor COOH HN N HN neuraminidase inhibitor NH2 NH2 NH Hugo Kubinyi, www.kubinyi.de Rational Design of HIV-Protease Inhibitors pharmacophore hypothesis hit from 3D search 8,5-12,0 Å P1 MeO P1' 3,5-6,5 Å HO OH HO H-bond donor / acceptor HN P1' OH O O O P1 OMe P2 NH P1 P1' HO OH P1 N HO N P2' OH P1' Hugo Kubinyi, www.kubinyi.de Binding Mode of the DuPont HIV-Protease Inhibitors Ile B50 Ile A50 Asp A25 Asp B25 Hugo Kubinyi, www.kubinyi.de DuPont HIV-Protease Inhibitors O HN R R NH2 H2N NH O HO O OH N N N DMP-412 N Ki = 4500 nM HO HO OH OH HN N DMP-323 R = -CH2OH O N HO N Ki = 0.3 nM OH DMP-450 R = -NH2 Ki = 0.3 nM Ki = 0.3 nM NH2 H3C DMP-850 Ki = 0.02 nM O N HO N OH Hugo Kubinyi, www.kubinyi.de HIV-Protease Inhibitor vs. Resistant Strains Gly-48 O N H O 3,1 Ile-50' 3,0 Ile-50 3,5 HO O O 3,5 H N HN NH N H N H 3,0 2,8 H N N H 4,0 OH NH 3,2 -O 3,1 3,4 O N O Gly-48' O H N N O Asp-30 Asp-30' 3,4 O H 2,9 2,9 O O 2,9 Asp-25' OH O Asp-25 Ki = 0.018 nM Hugo Kubinyi, www.kubinyi.de General Recommendations for Ligand Design Complementary hydrophobic surfaces contribute to affinity but lipophilicity increase reduces solubility. Hydrogen bonds are important for recognition and orientation; they increase or reduce affinity. The effect of repulsive interactions is hardly predictable. The effect of MEP and dipole interactions is most often neglected. Replacement of water molecules may reduce affinity. Small and/or flexible ligands are only weakly active; they may bind to many different targets. binding site: complex ligand small ligand + + - + - - + - + + + - - + - + + - + - - - + - + - M. M. Hann et al., J. Chem. Inf. Comput. Sci. 41, 856-864 (2001) Hugo Kubinyi, www.kubinyi.de Rational Design of Protease Inhibitors: Transition State Mimics O N H OH O OH P X substrate X = -CH2-, -NH-, -OOH CH OH CHO , as O OH N H O , as transition state OH OH mimics HO OH X X OH B OH X = -CF3, -CF2-R, -Aryl Hugo Kubinyi, www.kubinyi.de Rational Design: Transition State Mimics NH2 N N N N HO hypothetical transition state OH N N N HO pentostatin Ki = 2.5 pM O inosine HO OH H active agent HN OH N N N HO O HO OH N N HO N N O OH N N HN N HN N sugar N adenosine deaminase HO OH adenosine HO N HN O H O H2N OH nebularine Ki = 0.3 pM O HO OH Hugo Kubinyi, www.kubinyi.de Transition State Mimics are Picomolar Inhibitors O N HO O N NH N N R +: O : ..... OPO- HO H N N NH N R 3 HO OH transition state R. W. Miles et al., Biochemistry 37, 8615-8621 (1998) G. B. Evans et al., J. Med. Chem. 46, 155-160 (2003) HO OH transition state mimic R = H, Immucillin-H Ki hPNP = 72 pM R = NH2, Immucillin-G Ki hPNP = 29 pM Hugo Kubinyi, www.kubinyi.de Design of Selective ERα α and ERβ β Ligands blue: hERα α green: hERß estradiol hERα α ! hERß „upper“ side: Leu384 ! Met336 „lower“ side: Met421 ! Ile373 A. Hillisch et al., Ernst Schering Res. Found. Workshop 46, 47-62 (2004); A. Hillisch et al., Mol. Endocrinol. 18, 1599-1609 (2004) Hugo Kubinyi, www.kubinyi.de Design of Selective ERα α and ERβ β Ligands Potency ERα : 40 % of E2 Selectivity: 300 fold Potency ERβ : 50 % of E2 Selectivity: 190 fold Hugo Kubinyi, www.kubinyi.de Influenza In 1918/19, the „Spanish Flu“ killed about 20-40 mio people. Especially young and very old people died from influenza. The heavy death toll of this pandemic disease has to be compared to the number of 11 mio victims of World War I. Egon Schiele prepared this drawing of his wife, one day before her death and four days before he died himself, only 28 years old. Hugo Kubinyi, www.kubinyi.de Influenza Virus schematic view and electron microscopic picture Hugo Kubinyi, www.kubinyi.de Influenza Virus Hemagglutinine sialic acid binding sites Neuraminidase sialic acid cleavage sites Kansas City, 1918 viral surface Hugo Kubinyi, www.kubinyi.de hemagglutinine + sialic acid (green) neuraminidase + DANA (red) Hugo Kubinyi, www.kubinyi.de Design of Neuraminidase Inhibitors O OH OH HO AcNH HO OH O OR HO OH OH AcNH HO HO AcNH OH HO + Glu-119 Arg-371 O O - O O OH HO 4 sialic acid, R = H Glu-276 O Neu5Ac2en Ki = 1 000 nM Arg-292 Arg-118 4 result of a GRID search with a positively charged probe Glu-227 Hugo Kubinyi, www.kubinyi.de Design of Neuraminidase Inhibitors O OH OH HO AcNH HO OH O OR HO OH OH AcNH HO HO AcNH Arg-371 O OH O O 4 HN + H2N NH2 Glu-119 Glu-227 O OH HO 4 sialic acid, R = H Glu-276 O Neu5Ac2en Ki = 1 000 nM Arg-292 Arg-118 4-Guanidino-Neu5Ac2en Ki = 0.1-0.2 nM Zanamivir (Relenza, Glaxo-Wellcome) Hugo Kubinyi, www.kubinyi.de 1a4g glu arg Hugo Kubinyi, www.kubinyi.de Design of Bioavailable Neuraminidase Inhibitors OH O HO COOH R COOH AcNH HO AcNH HN NH2 4-NH2-Neu5Ac2en Ki = 50 nM COOH HO NH NH2 a) R = H Ki = 8 µM b) R = CH(OH)CH(OH)CH2OH Ki > 100 µM HO COOH AcNH AcNH NH2 IC > 200 µM 50 NH2 IC50 = 6.3 µM Hugo Kubinyi, www.kubinyi.de Design of Bioavailable Neuraminidase Inhibitors RO 3 AcNH 4 2 1 COOH 6 5 NH2 GS 4071, R = CH(Et)2 IC50 = 1 nM (Et)2CHO COOEt AcNH NH2 GS 4104 (ester prodrug of GS 4071) Oseltamivir (Tamiflu, Roche) R= H CH3 CH2CH3 CH2CH2CH3 CH2CH2CF3 CH2OCH3 CH2CH=CH2 CH2CH2CH2CH3 CH2CH(CH3)2 CH(CH3)CH2CH3 CH(CH2CH3)2 CH(CH2CH2CH3)2 Cyclopentyl Cyclohexyl Phenyl IC50 (nM) 6 300 3 700 2 000 180 225 2 000 2 200 300 200 10 1 16 22 60 530 Hugo Kubinyi, www.kubinyi.de 2qwk arg glu Hugo Kubinyi, www.kubinyi.de Binding Mode of Oseltamivir C. U. Kim et al., J. Am. Chem. Soc. 119, 681-690 (1997) Hugo Kubinyi, www.kubinyi.de Other Neuraminidase Inhibitors NH H2 N HN OH HN OH HN OH HN O H2 N O O H3C O CH3 BANA-113 (BioCryst, Univ. Alabama) CH3 OH CH3 O BCX-1812 = RWJ-270201 (BioCryst, J&J) OH N H IC50 = 0.1-11 nM N BANA-206 OH O A. F. Abdel-Magid et al., Curr. Opin. Drug. Discov. Dev. 4, 776-791 (2001) Hugo Kubinyi, www.kubinyi.de Other Neuraminidase Inhibitors COOH COOH NH2 O N O H3C CF3 HN O HN O A-315 675 Ki = 0.02 - 0.31 nM (different strains) Drug Discov. Today 7, 1066 (2002) Me CH3 COOH A-192 558 (Abbott Labs) A. F. Abdel-Magid et al., Curr. Opin. Drug. Discov. Dev. 4, 776-791 (2001) O NHAc Ki = 45 nM S. Hanessian et al., Bioorg. Med. Chem. Lett. 12, 3425-3429 (2002) Hugo Kubinyi, www.kubinyi.de The Relevance of Protein Crystal Structures: Conformational flexibility of PNP in the crystal favorable unfavorable Asn 243 hydrogen hydrogen bonds bonds ? O H H N H Thr 242 H O O O CH3 H N HN 6 7 HN 6 N 9 3 favorable H N 3 H2N N H2N N hydrogen S bond H N Asn 243 H O O H N 7 9 H Thr 242 CH3 N H unfavorable polar/nonpolar and steric interactions S Hugo Kubinyi, www.kubinyi.de The Relevance of Protein Crystal Structures: Enzymatic activity of PNP crystals O N HO N O NH N HO NH2 + H2PO-4 O OPO3H PNP HO OH HO OH O - N NH + N H N remove crystal reaction rate (% product) remove crystal add crystal add crystal time NH2