Download Solitary Dynamo Waves

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solitary Dynamo Waves
Joanne Mason (HAO, NCAR)
E. Knobloch (U.California, Berkeley)
CMSO (PPPL)
• Large-scale solar dynamo theory
• aW-dynamo
a-effect
a
B  BT  B P
W
latitude
The aW dynamo
time
(Courtesy HAO)
W-effect
• Mean-field electrodynamics
B
   u  B     aB    2 B
t
• Long wave dynamo instability
• Nonlinear evolution  mKdV equation  solitary wave
solutions
CMSO (PPPL)
The Model
z  L1  1
a   z -1
W   z 
z  L2  0
• Spatially localised a and W
(Moffatt 1978; Kleeorin & Ruzmaikin 1981; Steenbeck & Krause 1966)
• Write B  B P  BT    Ayˆ  Byˆ , u  u ( z )yˆ ( y  0)
W-effect
a-effect
A
 aB   2 A
t
a 0G0 z0 3
dynamo number D 
0 2
B
du A
D
 2 B
t
dz x
CMSO (PPPL)
Linear Theory
• Seek travelling wave solutions
[ A, B]  [az , bz ] exp  pt  ikx
p    i
• Apply continuity in A and B, matching conditions and
boundary conditions
Bz  L1, 2   0,
A
z  L1,2   0
z
 dispersion relation
4q 2 sinh 2 qL1 - L2   ikD sinh 2qL1 - 1sinh 2qL2   0
where
q2  p  k 2
Mason, Hughes & Tobias (2002)
CMSO (PPPL)
Most unstable mode
• Marginal stability (=0)
k  1 Dc  -
10 L1 - L2 2
L2 L1 - 1
• Set k  e  1
k  1  c  10k
10 
3
2
22 L1 - 1 - L1  L2 
• Dynamo waves set in forD  Dc with O(e) wavenumber
and O(e) frequency
CMSO (PPPL)
Nonlinear theory – mKdV equation
a
 z - 1

  z - 1 1 - B 2
1  B 2 ( x, z )
• Consider D  D0  e 2 D2     ,

Jepps (1975)
Cattaneo & Hughes (1996)
  de 2
 A   A0   A1 
      e    , A0 e x  ct  ~ O(1)
 B   0   B1 
 x  e X ,  t  eT1  e 3T3  e 4T4
• Solve dynamo equations at each order in e
• Inhomogeneous problems require solvability condition
3
• O(e ) : Modified Korteweg-de Vries equation forAˆ0  A0 / 
ˆ
Aˆ 0
Aˆ 0
 3 Aˆ 0

A
2
0
ˆ
-a
-a

b
A
0
0
3
T3



CMSO (PPPL)
a, b functions of
  e ( x  ct )
L1 , L2 , 10 only
Solutions to mKdV
• Solutions depend upon signs of a and b
b
a
L1  2
l-
• a  0, a  v  0 kinks:
C  N tanh  ,
N2 
L2
L1
3(a  v)
1 v
,  2  1  
b
2 a
• a  0, a  v  0 solitary waves:
 - N 2b 1/ 2 
6(a  v)
 , N 2 
C  N sech 
b
 6a 

• Snoidal and cnoidal waves also exist
CMSO (PPPL)
   - v
The perturbed mKdV equation
•On longer times forcing enters the description
C
C
 3C
2 C
-a
- a 3  bC
 ef  O(e 2 )




C  ,   A0  O(e )
  e ( x  ct )
D2  d
•The perturbation f selects the amplitude N :
N ˆ
2
 f  O(e )  N  30aL2 L1 -1D2  d  / bh,
t
h  ha, L1, 2 , D2 
v
N
L1  l  2
d
•Amplitude stability:
d
fˆ
2b 2 N 4 h
2
N
135a 210 L2 - L1 
• solitary waves are unstable (a  0, h  0, D2  d  0)
CMSO (PPPL)
Physical manifestation of solution
• Reconstruct the fieldsA0 , A1 , B1,  fromC
Solitary Waves:
B / e , | BP | / e
Kinks:
B / e ,  | BP | / e


z  0, d  1, L1  2, l  2
z  0, d  1, L1  2, l  1
CMSO (PPPL)
Conclusions
• Mean-field dynamo equations with a-quenching
possess solitary wave solutions
• Leading order description is mKdV equation.
Correction that includes effect of forcing and
dissipation leads to pmKdV. Allows identification
of N(d), v(d).
• Solutions will interact like solitons do  modify
butterfly diagram
References: Mason & Knobloch (2005), Physica D, 205, 100
Mason & Knobloch (2005), Physics Letters A (submitted)
CMSO (PPPL)
Related documents