Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CHAPTER 2 DIFFERENTIATION 2.1 Differentiation of hyperbolic functions 2.2 Differentiation of inverse trigonometric functions 2.3 Differentiation of inverse hyperbolic functions *Recall: Methods of differentiation - Chain rule - Product differentiation - Quotient differentiation - Implicit differentiation 1 2.1 Differentiation of Hyperbolic Functions Recall: Definition: e x  e-x cosh x  2 e x  e-x sinh x  2 sinh x e x  e-x tanh x   x cosh x e  e-x 1 cosh x coth x   tanh x sinh x cosech x = sech x  1 sinh x 1 cosh x 2 Derivatives of hyperbolic functions Example 2.1: Find the derivatives of (a) sinh x (b) cosh x (c) tanh x Solution: d  e x  e x (a)  sinh x  dx dx  2 d  1 2     ( e x  e  x )  cosh x  e x  e x d d (b)  cosh x  dx dx  2  1 2     ( e x  e  x )  sinh x 3  e x  e x d d (c)  tanh x  dx dx  e x  e  x     Using quotient diff:  e x  e  x e x  e  x  e x  e  x  e x  e  x   x x 2 e  e    e 2 x  e 2 x  2  e 2 x  e 2 x  2 e x e 4 e x e x  2  x 2  2   x x e  e       cosh x 1         2 2  sech 2 x Using the same methods, we can obtain the derivatives of the other hyperbolic functions and these gives us the standard derivatives. 4 Standard Derivatives y  f ( x) dy  f ( x) dx cosh x sinh x sinh x cosh x tanh x sech 2 x sech x cosech x coth x sech x tanh x cosech x coth x cosech 2 x 5 Example 2.2: 1.Find the derivatives of the following functions: a) b) c) 2. Find the derivatives of the following functions: (a) y  cosh  3x  (b) r  sinh(2t 2  1) (c) g ( x)  ( x  1)3 sech 2 x (d) y  tanh(ln x) 3.(Implicit differentiation) Find dy from the following expressions: dx (a) x  y 2 sinh 4 x  cosh y (b) y  tanh ( x  y ) 6 2.2 Differentiation Involving Inverse Trigonometric Functions Recall: Definition of inverse trigonometric functions Function Domain sin 1 x 1  x  1 cos1 x 1  x  1 tan 1 x   x   sec1 x cot 1 x cosec1 x x 1 Range   y 2  2 0  y     y 2 0 y  2   2  2  y  0  y    x   x 1    2  y  00  y   2 7 Derivatives of Inverse Trigonometric Functions Standard Derivatives: d 1 1 1. (sin x)  dx 1 x2 d 1 1 (cos x)  2. dx 1 x2 d 3. dx d 4. dx d 5. dx d 6. dx (tan (cot (sec 1 1 1 x) x) 1 1 x 2 1 1 x 2 1 x) x (csc 1 x 2 1 1 x) x x 2 1 8 2.2.1 Derivatives of y  sin 1 x . (proof) Recall: y  sin 1 x  x  sin y for x  [1, 1] and y  [  2 ,  2] . Because the sine function is differentiable on [  2 ,  2] , the inverse function is also differentiable. To find its derivative we proceed implicitly: Given sin y  x . Differentiating w.r.t. x: d d (sin y )  ( x) dx dx cos y  Since   2  y  2 dy 1 dx dy 1  dx cos y , cos y  0 , so dy 1 1 1    dx cos y 1  sin 2 y 1  x2 9 Example 2.3: 1. Differentiate each of the following functions. (a) f ( x)  tan1 x (b) g (t )  sin 1(1  t ) (c) h( x)  sec1 e2 x 2. Find the derivative of: (a) y  (tan1 x 2 )4 (b) f ( x)  ln(sin1 4 x) 3. Find the derivative of 4. Find the derivative y  tan 1 (tan(3t 2  1)) . dy if dx (a) x tan1 y  x 2  y (b) sin 1 ( xy)   2  cos1 y 10 Summary If u is a differentiable function of x, then d 1 du (sin 1 u )   1. dx 1  u 2 dx d 1 du (cos1 u )    2. dx 1  u 2 dx d 1 du 1 3. dx (tan u )  1  u 2  dx d 1 du 1 (cot u )    4. dx 1  u 2 dx d 1 du 1 (sec u )   5. dx u u 2  1 dx d 1 du 1 (csc u )    6. dx u u 2  1 dx 11 2.3 Derivatives of Inverse hyperbolic Functions Recall: Inverse Hyperbolic Functions Function Domain Range y  sinh 1 x (  ,  ) (  ,  ) y  cosh 1x [ 1,  ) [ 0 , ) y  tanh 1 x (1, 1) (  ,  ) y  coth 1 x (  , 1)  (1,  ) (  , 0 )  ( 0 ,  ) y = sech1 x (0, 1] [ 0 , ) y = cosech1x (  , 0 )  ( 0 ,  ) (  , 0 )  ( 0 ,  ) Function Logarithmic form y  sinh 1 x ln x  x 2  1 y  cosh 1x y  tanh 1 x  ln  x   x 1 2 1  1 x  ln  ; x  1 2  1 x  12 2.3.1 Proof: ( d 1 ) (sinh 1 x)  2 dx 1 x Recall: y  sinh 1 x  x  sinh y To find its derivative we proceed implicitly:  Given x  sinh y . Differentiating w.r.t. x: d d ( x)  (sinh y ) dx dx dy 1  cosh y dx dy 1   dx cosh y  Since    y   , cosh y  0 , so using the identity cosh 2 y  sinh 2 y  1: dy 1 1 1    dx cosh y 1  sinh2 y 1 x 2  d 1 (sinh 1 x)  dx 1  x2 13  Other ways to obtain the derivatives are: (a) y  sinh 1 x  x  sinh y then e y  e y dy x . Hence, find . 2 dx   (b) y  sinh 1 x = ln x  x 2  1 . Hence, find dy . dx 14 Standard Derivatives Function, y Derivatives, sinh 1 x dy dx 1 x2  1 cosh 1 x 1 x 1 2 ; x 1 tanh 1 x 1 ; x 1 2 1 x coth 1 x 1 ; x 1 2 1 x sech 1 x cosech1x  1 x 1 x 2 ; 0  x 1 1 x 1 x 2 ; x0 15 Generalised Form y  f (u ); u  g ( x) sinh 1 u dy dy du   dx du dx 1 du u 2  1 dx cosh 1u du ; u 1 2 u  1 dx tanh 1 u 1 du ; u 1 2 1  u dx coth 1u 1 du ; u 1 2 1  u dx sech 1u cosech1u 1  1 du ; 0  u 1 2 dx u 1 u 1 du ; u0 2 dx u 1 u 16 Example 2.4: Find the derivatives of (a) y  sinh 1 (1  3x) 1 (b) y  cosh 1   x (c) y  e xsech 1x (d) y  sinh 1 (tan 3x) 1 2 tanh t (e) f (t )  1  sec t (f) y  coth 1 u (g) y  cos 4 x cosh 1 4 x (h) y3  sinh 1 xy  0 17