Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
광통신 : Fundamentals Chang-Hee Lee ([email protected]) Korea Advanced Institute of Science and Technology 2003.4.11 C.-H. Lee, 03/04//11 1 Content • • • • • • Fundamentals Optical Transmitters and receiver Optical fiber and dispersion Wavelength Division Multiplexing Optical amplifier Optical Nolinearities C.-H. Lee, 03/04//11 2 Photophone(A.G. Bell, 1880) Sun 200 m Transmitter vibrator & mirror C.-H. Lee, 03/04//11 Receiver Se crystal 3 Advantages of Optical Comm. • Low loss(0.2 dB/km) – Coaxial cable : 1 dB/m – Twisted-pair wire : 10 dB/km • Wide bandwidth(~ 106 Gb/s - km) – Coaxial cable : ~ 300 Mb/s - km – Twisted-pair wire : ~ 3 Mb/s - km • • • • C.-H. Lee, 03/04//11 Abundant law material(SiO2) Immunity to interference Electrical isolation Signal security 4 Insertion Loss Comparison 10000 RG141 (4 GHz) Loss (dB) 1000 100 10 External Modulation Fiber Optic (DC-18 GHz) Direct Modulation Fiber Optic (DC-18 GHz) 1 RG141 (18 GHz) RG141 (1 GHz) RG141 (100 MHz) 0.1 1(0.3) 10(3) 100(30) 1000(300) 10000(3000) Length (ft) C.-H. Lee, 03/04//11 5 Signals in Optical Communications • Analog signal – Subcarrier multiplexing • Digital signal – Time division multiplexing – Frequency(or wavelength) division multiplexing – Code division multiplexing • Digital vs. analog – Signal power 0.1 mW, noise power 1 W – Analog : 20 dB signal to noise ratio – Digital : 10-22 bit error rate C.-H. Lee, 03/04//11 6 Digital Signals • Non return to zero 1 0 1 0 1 1 0 0 1 1 1 – Small bandwidth, no clock component • Return to zero 1 0 1 0 1 1 0 0 1 1 1 – Large signal bandwidth, clock component C.-H. Lee, 03/04//11 7 Digital Transmission Hierarchy Voice channel bandwidth 8,000 Hz sampling rate 8 bit/sample = 64 kbit/sec 7 x T2 Frame time : 125 sec .. . T4 or DS4 MUX 274.176 Mb/s .. . T3 or DS3 MUX 44.736 Mb/s 4 x T1 .. . T2 or DS2 MUX 24 x 64 kb/s .. . 6 x T3 6.312 Mb/s T1 or DS1 MUX North American hierarchy 1.544 Mb/s C.-H. Lee, 03/04//11 8 Standard Transmission Rates America Europe Japan Level Mb/s Voice channel Mb/s Voice channel Mb/s Voice channel 1 1.544 24 2.048 30 1.544 24 2 6.312 96 8.448 120 6.312 96 3 44.736 672 34.368 480 32.064 480 4 274.176 4032 139.264 1920 97.728 1440 565.148 7680 396.200 5760 5 C.-H. Lee, 03/04//11 9 SDH(SONET) Hierarchy C.-H. Lee, 03/04//11 Level Rate(Mb/s) OC -1 OC - 3 OC - 9 OC - 12 OC - 18 OC - 24 OC - 36 OC - 48 OC - 96 OC - 192 OC - 768 51.84 155.52 466.56 622.08 933.12 1,244.16 1,866.24 2,488.32 4,976.64 9,953.28 39,813.12 Voice channel 672 2,016 6,048 8,064 12,096 16,128 24,192 32,256 64,512 129,024 516,096 SDH level STM 1 STM 4 STM 16 STM 64 STM 256 10 Progress in Optical Communications Year Sources ~ 1980 GaAs LED and FP LD Wavelength Attenuation (nm) (dB/km) Dispersion Gb/s-km 800 - 900 > 5 dB/km Miltimode 5 ~ 1985 FP LD 1,300 0.4 - 0.6 Min. @1,310 100 ~ 1990 DFB LD 1,300 and 1,550 0.4 - 0.6 0.2 Min. @1,310 < 1,000 Present DFB LD 1,550 Amplifiers Min. @1,310 or Comp. 10,000 DFB LD WDM 1,550 Amplifiers C.-H. Lee, 03/04//11 “ 100,000 11 Digital Optical Transmission - Baseband transmission - Recovery of input data without error - Requires Nyquist channel(no intersymbol interference) Transmitters/ MUX Data in Optical fiber Optical amplifier Optical amplifier Optical fiber Optical amplifier Optical amplifier C.-H. Lee, 03/04//11 Data out DMUX/ Receivers 12 Eye Diagram Periodic superposition of data Level “1” Eye closure Decision threshold Level “0” Eye closure Decision time C.-H. Lee, 03/04//11 Timing jitter 13 Optical Transmitters DFB LD Driver IC module Driver IC Fiber Bandwidth Impedance matching Data Data Bandwidth Impedance matching Temperature control Chirping Extinction ratio Output power Automatic power control An optical transmitter with a modulator integrated DFB LD has the same configuration. Direct modulation C.-H. Lee, 03/04//11 Output Output DFB LD module Chirping Extinction ratio Output power Temperature and power control Automatic bias control SBS suppression External modulation SBS : stimulated brillouin scattering 14 Semiconductor Injection Laser E2 E2 hn12 E2 hn12 hn12 E1 E1 Absorption (in phase) E1 Spontaneous emission hn12 Stimulated emission Current injection Cleaved facet Optical and carrier confinement Lasing spot 0.1 ~ 0.2 m 250 ~ 500 m ~ 100 m C.-H. Lee, 03/04//11 Output to be coupled into a fiber 15 Light output (mW) Modulation of Injection Laser 2 P1 1 P0 0 20 40 Time Current (mA) lb lb+lm Extinction ratio r = P1/P0 Time C.-H. Lee, 03/04//11 16 Effects of Temperature/Aging Light output (mW) P1' P1 For constant average power - decreases extinction ratio Pave P0 Po' lb l +l ' b m lb lb' lm' For fixed bias - decrease average power - decreases extinction ratio - a large amount of chirp Current (mA) Control circuits for temperature, average power, and extinction ratio are required C.-H. Lee, 03/04//11 17 Bias & Modulation Current Control Vcc LD MONITOR PD Ibias DATA APC PEAK DETECTOR VBB Im CONTROL CIRCUIT GRD C.-H. Lee, 03/04//11 - Low speed transmitter Temperature, bias & modulation current control - High speed transmitter Temperature and bias current control 18 External Modulator Output V1 Ground DFB LD module V2 Electro-optic material - Phase shift (V1-V2) - Transfer function = Eo * Cos[ p (V1-V2)/2Vp] * Exp[ i p (V1+V2)/2Vp] - Chirp parameter = (V2+V1) / (V2 - V1) C.-H. Lee, 03/04//11 1.0 0.8 0.6 0.4 0.2 0.0 1.0 2.0 3.0 (V1-V2)/Vp 19 Integrated EA Modulator DFB laser Popt Linear model P C1 ~P0 e-(V/V0)a Optical output Pmax 0 P0/e Modulator SI-InP burying layer AR coat Active layer Absorption layer C.-H. Lee, 03/04//11 C2 0 V V0 Pmin V b Input signal 20 Comparison of Modulation Methods Modulator Chirping Voltage* BW Loss parameter [GHz] [dB] Laser diode - a < 3 1.5 29 LiNbO3 -1 <a < 1 5-8 110 >5 Electro-a >2 2 42 ~ 10 absorption MI-DFB -a >2 2 20 DFB-MZ -1 <a < 1 5 55 * Modulation voltage for 10 dB extinction ratio ** Chirping in EA modulator and MI-DFB depend on operating wavelength C.-H. Lee, 03/04//11 21 Guiding of Light Total internal reflection Optical fiber C.-H. Lee, 03/04//11 22 Types of fiber n2 n1 Single mode Step index 125m cladding 8~12m core 125~400m cladding Multimode Step index 50~200m core 125~640m cladding Multimode Graded index C.-H. Lee, 03/04//11 50~600m core 23 Optical Receiver PIN APD Noise Group delay Preamplifier Bandwidth Dynamic range Phase margin Ambiguity level AGC amplifier Decision circuit Data Optical signal Gain control Clock regeneration Clock Linear channel(Analog) Digital Narrow band Low speed C.-H. Lee, 03/04//11 Clock extraction Jitter Jitter transfer AGC : automatic gain control PIN : pin diode, APD : avalanche photodiode 24 Input optical power Receiver Sensitivity & Dynamic Range Dynamic range Transimpedance Preamplfier C.-H. Lee, 03/04//11 High impedance Load or feedback resistance 25 Clock Recovery Circuit 0 B/2 B f 0 B/2 Pre-filter * High pass filter C.-H. Lee, 03/04//11 B f 0 B/2 B Non-linear processor * Squarer * Differentiate & rectify * Exclusive-OR * Delay & multiply f 0 B f Narrow band filter * Phase-locked-loop(PLL) * Surface acoustic wave(SAW) filter * Dielectric resonator 26 Decision Circuit Signal AMP Signal D D D Q FLIPFLOP CLOCK Q Data Data Recovered clock T(360) Threshold ambiguity - Minimum input signal amplitude - Required for a given error rate Clock phase margin (CPM) Maximum deviation of the clock edge from the center of the signal eye pattern for desired error rate (Typically specified in degrees, 360 being the ideal value) C.-H. Lee, 03/04//11 CPM 27 SDH/SONET Requirements Transmitter Bit Wave rate Reach length P min P max (Mb/s) (m) (dBm) (dBm) -23 -14 1.3 SR OC-1 -8 51.8 IR 1.3,1.5 -15 -5 0 LR 1.3,1.5 -15 -8 1.3 SR OC-3 -8 155 IR 1.3,1.5 -15 -5 0 LR 1.3,1.5 -15 -8 1.3 SR OC-12 -8 622 IR 1.3,1.5 -15 -3 2 LR 1.3,1.5 -10 -3 1.3 SR OC-48 2,488 -5 0 IR 1.3,1.5 -5 0 LR 1.3,1.5 C.-H. Lee, 03/04//11 Receiver Sens Overload Technology (dBm) (dBm) Option -31 -14 PIN-Bipolar or CMOS -28 -8 PIN-Bipolar or CMOS -34 -10 PIN-Bipolar or CMOS -23 -8 PIN-Bipolar or CMOS -28 -8 PIN-Bipolar or CMOS -34 -10 PIN-GaAs FET -23 -8 PIN-Bipolar -28 -8 PINFET or Ge APD- Bipolar -28 -8 PINFET or Ge APD- Bipolar -18 -3 PIN-GaAs FET -18 0 PIN-GaAs FET -26 -10 InGaAs APD-FET or Bipolar Note : Receiver sensitivity & overload specified at 10-10 BER at end-of-life with worst case transmitter 28 System impairments • Chromatic dispersion • Polarization effects – PMD, PDL, PHB • Noise accumulation (Optical SNR) • Spectral dependence of gain and self filtering • Fiber nonlinearities – SBS, SRS – SPM, XPM, FWM, MI • Crosstalks • Optical surge generation C.-H. Lee, 03/04//11 29 Modes in Optical Fiber n2 n1 n2 Propagation constant a b n1 > n2 b(w) = bo b1 Dw ko n1 b2 Dw2/2 Dispersion Guided mode ko n2 Radiation mode wo Optical frequency C.-H. Lee, 03/04//11 a w b3 Dw3/6 Higher order dispersion .. bn = dn b / dwn | w = wo Dw = w - wo 30 Material Dispersion of Silica 1.45 30 1.44 1.43 Group index 1.2 1.3 1.4 1.5 1.6 1.7 1.465 Wavelength [m] 1.464 1.463 Dispersion[ps/nm/km] Index 1.46 Anomalous dispersion 20 10 1.2 1.3 1.4 1.5 1.6 1.7 -10 Wavelength [m] 1.462 -20 1.461 Normal dispersion 1.2 1.3 1.4 1.5 1.6 1.7 Wavelength [m] C.-H. Lee, 03/04//11 31 Waveguide Dispersion Index of refraction n1 n1 > n2 Waveguide n2 Radius Mode profiles w1 w3 > w2 > w1 w2 Effective index n3 > n2 > n1 w3 C.-H. Lee, 03/04//11 32 Dispersion in Optical Fiber D[ps/km.nm] D = 2p c b2 / l2 +40 Anomalous dispersion : blue travel fast +20 Material dispersion NDSF DSF 0.0 -20 Waveguide dispersion -40 Normal dispersion : red travel fast 1100 1200 1300 1400 1500 1600 1700 Wavelength[nm] C.-H. Lee, 03/04//11 33 Distance @ 1 dB penalty[km] Effects of Fiber Dispersion 100000 Loss limit 0.1ps/nm.km 3 ps/nm.km 17 ps/nm.km 10000 1000 100 Loss limit 10 1 1 10 100 Bit rate[Gb/s] Fiber loss : 0.3 dB/km, Transmitter output : -3dBm, Sensitivity : -26 dBm at 2.5Gb/s, Slope : -1.5dB/bit rate C.-H. Lee, 03/04//11 34 Dispersion Compensation I Anomalous dispersion Fiber output Transmission fiber time Normal dispersion Dispersion compensator Dispersion compensator output time C.-H. Lee, 03/04//11 35 Dispersion Compensation II • Passive methods – Dispersion shifted fiber(DSF) – Compensation fiber(DCF, two-mode fiber) – Fiber grating or interferometers – Spectral filter • Active methods – Prechirping – Spectral inversion(MSSI) – Nonlinear transmission – Soliton transmission • Electrical methods – Duobinary signal, transversal filter C.-H. Lee, 03/04//11 36 Polarization Mode Dispersion I Birefringence Mechanisms C.-H. Lee, 03/04//11 37 Polarization Mode Dispersion II • Group delay difference between two orthogonal propagation modes • Origin of PMD – loss of degeneracy by distortion of fiber core, – Inhomogeneous stress and temperature distribution • PMD shows statistical behavior • ITU-T recommendation – PMD should be less than 0.1 times the bit period C.-H. Lee, 03/04//11 38 Polarization Mode Dispersion III Y Z PMD(Dt) Length PMD(Dt) Highly coupled PMD(Dt) Probability Uncoupled Probability X PMD(Dt) Length Maximum PMD < 0.1 x bit period C.-H. Lee, 03/04//11 39 Wavelength Division Multiplexing n channels fiber l demux +40 3rd window (1550nm) 15 THz (120nm) +20 NDSF 1.5 0.0 1.0 -20 0.5 -40 A<0.2dB/km A<0.35dB/km Attenuation[dB/km] Dispersion[ps/km.nm] l mux 0.0 1200 C.-H. Lee, 03/04//11 1300 1400 1500 Wavelength[nm] 1600 1700 40 WDM Economic Advantage TDM based system 1 SONET Terminal Regen Regen Regen Regen SONET Terminal Regen Regen SONET Terminal 40 km 16 SONET Terminal Regen Regen WDM based system 1 SONET Terminal 16 SONET Terminal W D M ~30 dB, 120 km SAVES FIBER REGENERATORS REGEN SITES W Amp D M SONET Terminal SONET Terminal Decreases cost of bandwidth and simplifies the network C.-H. Lee, 03/04//11 41 Transmission Capacity Evolution TDM WDM Capacity (Gb/s) 10000 1000 Installed Research 10x / 2.5 yrs 100 10 10x / 6 yrs 1 Source : NTT + Paper 0.1 1980 C.-H. Lee, 03/04//11 1985 1990 Year 1995 2000 2005 42 WDM Sources • Discrete sources ; – static & dynamic spectral stability • Active filter tunable sources – fiber laser, tunable semiconductor laser – Broadband sources & filter • Geometrical selection design • Array technologies C.-H. Lee, 03/04//11 43 WDM Receiver Options • Fiber Fabry-Perot filter • Active tunable filter – Acousto-optic, semiconductor • • • • Multilayer interference filter Fiber grating filter Planner Si/SiO2 waveguide Mux/Demux Integrated InP-based technologies C.-H. Lee, 03/04//11 44 Arrayed Waveguide Grating Input/output waveguide Input/output waveguide Dx Lf Slab Waveguide d Slab Waveguide Arrayed-waveguide Waveplate Arrayed-waveguide C.-H. Lee, 03/04//11 45 MUX/DMUX with AWG Multiplexing l1 l2 l3 l4 l5 l1,l2,l3,l4, l5 l1,l2,l3,l4, l5 Demultiplexing C.-H. Lee, 03/04//11 l1 l2 l3 l4 l5 46 Why Optical Amplifiers? • Increase transmission distance – by increasing optical power coupled to transmission fiber(power booster) – by compensating optical fiber losses(in-line amplifier, remote pump amplifier) – by improving receiver sensitivity(optical preamplifier) • WDM signal and soliton transmission • Realization of transparent optical network WDM : wavelength division multiplexing C.-H. Lee, 03/04//11 47 Optical Amplifiers • Function : Amplification of optical signal without conversion to electrical signal • Ingredients : Pump energy, amplification medium Pumping of energy Optical input Optical output amplification medium - Doped-fiber(rare-earth) - Fiber(nonlinear) - Semiconductor 3R repeater output 3R : Regeneration, Reshaping, Retiming C.-H. Lee, 03/04//11 48 EDFA(Er-doped fiber amplifier) Spectral gain Energy level diagram 4I 980 nm 1480 nm 15201570 nm4 11/2 13/2 I 15/2 Inversion 30 Gain [dB] 4I 0.84 0.55 0.47 0.36 20 10 0 1501 1551 1561 Wavelength length[nm] Erbium-doped Fiber PIN Wavelength selective coupler (~ 1550 nm) (~ 1550 nm) Laser-diode pump C.-H. Lee, 03/04//11 P OUT Conventional repeater with O/E and E/O conversion 3R repeater 49 Amplifier Operation Points Gain [dB] 40 Booster amplifier 35 30 preamplifier 25 60 mW 45 mW 30 mW in-line amplifier 20 15 10 -10 -5 0 5 10 15 Output power[dBm] C.-H. Lee, 03/04//11 50 Improvement of System Gain Booster amplifier Preamplifier Improvement in gain(dB) Improvement Key in length(km) technology 10 - 15 40 - 60 High efficiency 5 - 10 (APD) 10 - 15 (PIN) 15 - 30 20 - 40 40- 60 60 - 120 Low noise In-line amplifier Remote pump 5 - 15 amplifier 30 - 60 Low noise Supervisory High pumping power Fiber loss : 0.25 dB/km C.-H. Lee, 03/04//11 51 Optical Fibers and Amplifiers Fiber amplifier Semiconductor amp. Doped fiber amp. 2nd window (1310nm) 15 THz (85nm) +40 +20 EDFA 2.0 3rd window (1550nm) 15 THz (120nm) NDSF 1.5 DSF 0.0 1.0 NZDSF -20 0.5 A<0.2dB/km -40 A<0.35dB/km DCF Attenuation[dB/km] Dispersion[ps/km.nm] Optical Amplifiers PDFA 0.0 1100 1200 1300 1400 1500 1600 1700 Wavelength[nm] NDSF : non-dispersion shifted fiber, DSF : dispersion shifted fiber, DCF : dispersion compensating fiber C.-H. Lee, 03/04//11 52 Cascading of Amplifiers OA OTX 1 Gain [dB] ... OA 2 OA m OA ORX m+1 30 20 lo 10 0 1501 1551 1561 m Pase |mth = 2hvnspj BosG j=1 Wavelength length[nm] • Designed gain is equal to span loss at lo • Accumulation of ASE : linear sum • Accumulation of gain difference : logarithmic sum : requires gain flattening • Increase of nonlinear effect C.-H. Lee, 03/04//11 53 Spectra of concatenated amplifiers 0 Res : 0.2 nm Power (dBm) -10 10 EDFAs -20 -30 5 EDFAs -40 1 EDFA -50 -60 1520 1530 1540 1550 1560 1570 Wavelength (nm) C.-H. Lee, 03/04//11 54 Issues of Amplifier Design • Optimization – maximum efficiency – minimum noise figure – maximum gain – maximum gain flatness/gain peak wavelength • • • • Dynamic range, operation wavelength Gain equalization Control circuit Monitoring of amplifier performance C.-H. Lee, 03/04//11 55 Output power[mW] Required Optical Power Pout = 2hv nsp SNR Bo [eal - 1]L / l L = 1000 km nsp = 1.5 Bo = 0.1 nm SNR = 100 a = 0.22 dB/km 10 1.0 0.1 1 2 5 10 20 50 100 200 Amplifier spacing[km] C.-H. Lee, 03/04//11 56 Optical Nonlinearities • Stimulated scattering(Phonon-Photon int.) – SBS, SRS – Phase matching is not required • Electronic nonlinearities( n = no + n2 I) – SPM, XPM, FWM – FWM requires phase matching • Suppression of fiber nonlinearities – FWM by dispersion management – SBS by linewidth broadening C.-H. Lee, 03/04//11 57 Self-phase Modulation • Intensity modulation of the signal modulates its own phase • This phase modulation broadens the signal spectrum Leff d I Dn = n 2 l dt n2 : nonlinear index Leff : effect length I : Intensity • Excess bandwidth leads to more pulse broadening due to dispersion • Dispersion compensation and • Prechirping modifies SPM effects C.-H. Lee, 03/04//11 58 Intensity SPM Induced Chirping Chirping Time C.-H. Lee, 03/04//11 Time • Phase modulation due to Intensity dependent refractive index • Linear positive chirping in center of pulse • Chirped pulse can be compressed in anomalous dispersion region. 59 SPM and Dispersion Compensation • without SPM SMF DCF Fiber input DCF output Fiber output time time • Dispersion induces negative chirp • Exact compensation of chromatic dispersion • with SPM SMF DCF Fiber input DCF output Fiber output time C.-H. Lee, 03/04//11 time • SPM induces positive chirp decreases dispersion induced chirp. • DCF output has a residual positive chirp. 60 Modulation Instability • Break of a CW or a pulse into a modulated structure spontaneously or seeded by ASE. • Observed in anomalous dispersion regime 8 p 2cn 2P o m ax = 2 , g m ax = 4 pP o / lAeff l AeffD • Critical in high power directly modulated system • Low power, normal dispersion, external modulator, dispersion management C.-H. Lee, 03/04//11 61 Eye Closure Penalty Eye Closure Ratio (dB) 5 4 3 D (ps/nm/km) : +1.0 : +0.5 : 0 : -0.5 : -1.0 10 Gb/s, DM 400 km 2 1 0 0 C.-H. Lee, 03/04//11 10 5 15 Fiber Input Power PF (dBm) 20 62 Cross Phase Modulation • Broadening of spectral width due to cross phase modulation • Induces interference in closely spaced channel systems • Induces timing jitters • Minimized by increasing channel spacing – Walk-off decreases XPM effects – Dl > 2/(D Leff Bit rate) C.-H. Lee, 03/04//11 63 XPM Induced Chirping Signal Intensity Interference pulse Intensity Intensity Time Blue shift Time Red shift Time • Walk off decreases XPM effects C.-H. Lee, 03/04//11 64 Effects of XPM JLT’94 2.5 Gb/s 360 km 120 km amplifier spacing D = 16 ps/nm/km Power : 5 mW/channel 0.2 nm 1.6 nm C.-H. Lee, 03/04//11 15 dBm/channel 65 Four-wave Mixing Beating between two signals modulates a signals phase at the difference frequency Into fiber w1 w w2 n = no + n2 [ E12 + E22+ 2E1E2 cos(w1-w2)t] Out of fiber 2w1-w2 w1 w2 2w2-w1 w Phase matching is required for high generation efficiency C.-H. Lee, 03/04//11 66 Phase Matching Efficiency Channel spacing[nm] Efficiency[dB] 0.5 1 1.5 2 2.5 3 -10 -20 D = 0 ps/nm.km -30 -40 D = 2 ps/nm.km -50 D = 17 ps/nm.km -60 C.-H. Lee, 03/04//11 67 FWM Efficiency (Pin = 3dBm/channel) Dispersion-Shifted Fiber(25km) Nonzero-Dispersion Fiber(50km) D = 2 ps/kmnm 10dB/div 10dB/div D=0 lo Wavelength(1nm/div) C.-H. Lee, 03/04//11 Wavelength(1nm/div) 68 Suppression of FWM • Minimization of effects – decrease power – increase channel spacing • Limited by EDFA gain bandwidth – unequal spacing • the power depletion is not compensated – dispersion management • G.655 fiber • +/- dispersion • spectral inversion C.-H. Lee, 03/04//11 69 Stimulated Raman Scattering • Power transfer from shorter wavelength channel to longer wavelength channel • Deterministic penalty due to walk-off • 0.5 dB penalty threshold(w/o compensation) P to l Dl Leff 40 m W .n m .M m Dl :to talchan n el sp acin g • System capacity : ~ 106 Gb/s . km • Minimization techniques – Low power – Spectral inversion – Raman compensation C.-H. Lee, 03/04//11 70 RAMAN GAIN (x10-13 m/W) Raman Gain Spectrum 1.2 lp=1m 1.0 0.8 0.6 0.4 0.2 0 0 6 12 18 24 30 36 42 FREQUENCY SHIFT (THz) C.-H. Lee, 03/04//11 71 Raman Induced Distortion Raman gain w Good approx. for f < 13 THz Successive energy transfer to low frequency channels w w Input spectrum C.-H. Lee, 03/04//11 Output spectrum 72 Summary of Nonlinear Effects • System capacity is limited by optical nonlinearities – Ultimate capacity : ASE & Raman – Real system : SPM & XPM • Dispersion management suppresses nonlinear effects – FWM, XPM, Raman • Nonlinearity limits dispersion compensation C.-H. Lee, 03/04//11 73